scholarly journals Involvement of Redox Sites in Propane Ammoxidation on V-Sb-Oxide Catalysts.

2001 ◽  
Vol 44 (2) ◽  
pp. 140-144
Author(s):  
Satit PHIYANALINMAT ◽  
Miki YASHIRO ◽  
Atsushi SATSUMA ◽  
Tadashi HATTORI
ACS Nano ◽  
2015 ◽  
Vol 9 (4) ◽  
pp. 3470-3478 ◽  
Author(s):  
Qian He ◽  
Jungwon Woo ◽  
Alexei Belianinov ◽  
Vadim V. Guliants ◽  
Albina Y. Borisevich

2011 ◽  
Vol 233-235 ◽  
pp. 1460-1463
Author(s):  
Yong Ming Dai ◽  
Tsung Chi Pan ◽  
Jih Mirn Jehng

Nanoscale supported tungsten oxide catalysts were synthesized by hydrothermal method using γ-Al2O3, Nb2O5, TiO2, ZrO2and CeO2as supports with a loading of 5~20% WO3on each supports, respectively. The physical properties and structural information were characterized by BET, XRD, ICP-AES and in situ Raman spectroscopy. Raman results confirm that the desired molecular arrangements of the active surface WOxspecies have been achieved without the presence of the crystalline WO3phase. The reactivity/selectivity of the supported WOxcatalysts are chemically probed with steady-state methanol oxidation reaction. The catalytic results of methanol oxidation reaction have revealed that the acid sites are present on the surface of WOx/Al2O3, WOx/Nb2O5, WOx/TiO2and WOx/ZrO2catalysts for the mainly production of dimethylether (DME), and redox sites have only present on the surface of the WOx/CeO2catalysts for the oxidation production of formaldehyde (HCHO). In addition, the WOx/CeO2catalysts possesses the high redox reactivity and the WOx/Al2O3catalyst possesses the highest acid reactivity.


2015 ◽  
Vol 506 ◽  
pp. 109-117 ◽  
Author(s):  
Tamara V. Andrushkevich ◽  
Galina Y. Popova ◽  
Yuriy A. Chesalov ◽  
Evgeniya V. Ischenko ◽  
Mikhail I. Khramov ◽  
...  

2002 ◽  
Vol 205 (1) ◽  
pp. 97-106 ◽  
Author(s):  
H. Roussel ◽  
B. Mehlomakulu ◽  
F. Belhadj ◽  
E. van Steen ◽  
J.M.M. Millet

Sign in / Sign up

Export Citation Format

Share Document