redox sites
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 35)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Garrett L. Reinhard ◽  
Selvakumar Jayaraman ◽  
Joshua W. Prybil ◽  
Jonathan F. Arambula ◽  
Kuppuswamy Arumugam

Unambiguous assignment of redox sites on ferrocene coupled N-heterocyclic carbene gold(i) anticancer therapeutic agents is described.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3380
Author(s):  
Wenmin Wang ◽  
Bing Li ◽  
Hsin-Ju Yang ◽  
Yuzhi Liu ◽  
Lakshmanan Gurusamy ◽  
...  

Hydrogen is considered to be a very efficient and clean fuel since it is a renewable and non-polluting gas with a high energy density; thus, it has drawn much attention as an alternative fuel, in order to alleviate the issue of global warming caused by the excess use of fossil fuels. In this work, a novel Cu/ZnS/COF composite photocatalyst with a core-shell structure was synthesized for photocatalytic hydrogen production via water splitting. The Cu/ZnS/COF microspheres formed by Cu/ZnS crystal aggregation were covered by a microporous thin-film COF with a porous network structure, where COF was also modified by the dual-effective redox sites of C=O and N=N. The photocatalytic hydrogen production results showed that the hydrogen production rate reached 278.4 µmol g−1 h−1, which may be attributed to its special structure, which has a large number of active sites, a more negative conduction band than the reduction of H+ to H2, and the ability to inhibit the recombination of electron-hole pairs. Finally, a possible mechanism was proposed to effectively explain the improved photocatalytic performance of the photocatalytic system. The present work provides a new concept, in order to construct a highly efficient hydrogen production catalyst and broaden the applications of ZnS-based materials.


Author(s):  
Laura Collado ◽  
Patricia Reñones ◽  
Javier Fermoso ◽  
Fernando Fresno ◽  
Leoncio Garrido ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Hitoshi Izu ◽  
Mio Kondo ◽  
Masaya Okamura ◽  
Misa Tomoda ◽  
Sze Koon Lee ◽  
...  

Electron transfers in multinuclear metal complexes are the origin of their unique functionalities both in natural and artificial systems. However, electron transfers in multinuclear metal complexes are generally complicated, and predicting and controlling these electron transfers is extremely difficult. Herein, we report the precise manipulation of the electron transfers in multinuclear metal complexes. The development of a rational synthetic strategy afforded a series of pentanuclear metal complexes composed of metal ions and 3,5-bis(2-pyridyl)pyrazole (Hbpp) as a platform to probe the phenomena. Electrochemical and spectroscopic investigations clarified the overall picture of the electron transfers in the pentanuclear complexes. In addition, unique electron transfer behaviours, in which the reduction of a metal centre occurs during the oxidation of the overall complex (reduction-upon-oxidation process), were discovered. We also elucidated the two dominant factors that determine the manner of the electron transfers. Our results provide comprehensive guidelines for interpreting the complicated electron transfers in multinuclear metal complexes.


Function ◽  
2021 ◽  
Author(s):  
Quynh V Duong ◽  
Yan Levitsky ◽  
Maria J Dessinger ◽  
Jasiel O Strubbe-Rivera ◽  
Jason N Bazil

Abstract Mitochondrial reactive oxygen species (ROS) play important roles in cellular signaling; however, certain pathological conditions such as ischemia/reperfusion (I/R) injury disrupt ROS homeostasis and contribute to cell death. A major impediment to developing therapeutic measures against oxidative stress induced cellular damage is the lack of a quantitative framework to identify the specific sources and regulatory mechanisms of mitochondrial ROS production. We developed a thermodynamically consistent, mass-and-charge balanced, kinetic model of mitochondrial ROS homeostasis focused on redox sites of electron transport chain complexes I, II, and III. The model was calibrated and corroborated using comprehensive data sets relevant to ROS homeostasis. The model predicts that complex I ROS production dominates other sources under conditions favoring a high membrane potential with elevated NADH and QH2 levels. In general, complex I contributes to significant levels of ROS production under pathological conditions, while complexes II and III are responsible for basal levels of ROS production, especially when QH2 levels are elevated. The model also reveals that hydrogen peroxide production by complex I underlies the non-linear relationship between ROS emission and O2 at low O2 concentrations. Lastly, the model highlights the need to quantify scavenging system activity under different conditions to establish a complete picture of mitochondrial ROS homeostasis. In summary, we describe the individual contributions of the ETS complex redox sites to total ROS emission in mitochondria respiring under various combinations of NADH- and Q-linked respiratory fuels under varying workloads.


2021 ◽  
Author(s):  
Quynh V Duong ◽  
Yan Levitsky ◽  
Maria J Dessinger ◽  
Jason Nolan Bazil

Mitochondrial reactive oxygen species (ROS) play important roles in cellular signaling; however, certain pathological conditions such as ischemia/reperfusion (I/R) injury disrupt ROS homeostasis and contribute to cell death. A major impediment to developing therapeutic measures against oxidative stress induced cellular damage is the lack of a quantitative framework to identify the specific sources and regulatory mechanisms of mitochondrial ROS production. We developed a thermodynamically consistent, mass-and-charge balanced, kinetic model of mitochondrial ROS homeostasis focused on redox sites of electron transport chain complexes I, II, and III. The model was calibrated and validated using comprehensive data sets relevant to ROS homeostasis. The model predicts that complex I ROS production dominates other sources under conditions favoring a high membrane potential with elevated NADH and QH2 levels. In general, complex I contributes to significant levels of ROS production under pathological conditions, while complexes II and III are responsible for basal levels of ROS production, especially when QH2 levels are elevated. The model also reveals that hydrogen peroxide production by complex I underlies the non-linear relationship between ROS emission and O2 at low O2 concentrations. Lastly, the model highlights the need to quantify scavenging system activity under different conditions to establish a complete picture of mitochondrial ROS homeostasis. In summary, we describe the individual contributions of the ETS complex redox sites to total ROS emission in mitochondria respiring under various combinations of NADH- and Q-linked respiratory fuels under varying work rates.


2021 ◽  
Vol 9 ◽  
Author(s):  
Julián Enciso ◽  
Alfonso Ramírez ◽  
Carlos Ostos ◽  
Adriana Echavarría ◽  
Misael Córdoba ◽  
...  

This study focuses on examining the isomerization of allyl alcohol using ruthenium (Ru) supported on alumina as a heterogeneous catalyst. The synthesized Ru/Al solids were characterized by various characterization techniques. The content of Ru was estimated by the energy dispersive x-ray technique. The x-ray diffraction (XRD) confirmed the presence of phases in the support and active species in the catalysts. The surface area of the support after Ru impregnation and the pore volume were determined by nitrogen physisorption. The analysis of programmed temperature (TPR and TPO) shows different redox sites which is confirmed by XPS. The catalytic results suggest a dependence on the amount of available metallic Ru, as well as the importance of the continuous regeneration of the metal using H2 to achieve a good conversion of the allyl alcohol. For comparison purposes, the commercial Ru on alumina 5% (CAS 908142) was used. The results show up to 68% alcohol conversion and 27% yield of the isomerization product using Ru(1,5.4h)/Al catalyst in comparison with 86% conversion and 39% yield of the isomerization product using CAS 908142. In contrast, our catalysts always presented higher TOF values (149–160) in comparison with CAS 908142 (101).


2021 ◽  
pp. 130201
Author(s):  
Meng Dan ◽  
Fan Wu ◽  
Jianglai Xiang ◽  
Yuehan Cao ◽  
Yunqian Zhong ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document