Video segmentation using Maximum Entropy Model

2005 ◽  
Vol 6 (S1) ◽  
pp. 47-52
Author(s):  
Li-juan Qin ◽  
Yue-ting Zhuang ◽  
Yun-he Pan ◽  
Fei Wu
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Arian Ashourvan ◽  
Preya Shah ◽  
Adam Pines ◽  
Shi Gu ◽  
Christopher W. Lynn ◽  
...  

AbstractA major challenge in neuroscience is determining a quantitative relationship between the brain’s white matter structural connectivity and emergent activity. We seek to uncover the intrinsic relationship among brain regions fundamental to their functional activity by constructing a pairwise maximum entropy model (MEM) of the inter-ictal activation patterns of five patients with medically refractory epilepsy over an average of ~14 hours of band-passed intracranial EEG (iEEG) recordings per patient. We find that the pairwise MEM accurately predicts iEEG electrodes’ activation patterns’ probability and their pairwise correlations. We demonstrate that the estimated pairwise MEM’s interaction weights predict structural connectivity and its strength over several frequencies significantly beyond what is expected based solely on sampled regions’ distance in most patients. Together, the pairwise MEM offers a framework for explaining iEEG functional connectivity and provides insight into how the brain’s structural connectome gives rise to large-scale activation patterns by promoting co-activation between connected structures.


2019 ◽  
Vol 677 ◽  
pp. 281-298 ◽  
Author(s):  
Narges Kariminejad ◽  
Mohsen Hosseinalizadeh ◽  
Hamid Reza Pourghasemi ◽  
Anita Bernatek-Jakiel ◽  
Giandiego Campetella ◽  
...  

2019 ◽  
Vol 36 (7) ◽  
pp. 2278-2279
Author(s):  
Ahmed A Quadeer ◽  
Matthew R McKay ◽  
John P Barton ◽  
Raymond H Y Louie

Abstract Summary Learning underlying correlation patterns in data is a central problem across scientific fields. Maximum entropy models present an important class of statistical approaches for addressing this problem. However, accurately and efficiently inferring model parameters are a major challenge, particularly for modern high-dimensional applications such as in biology, for which the number of parameters is enormous. Previously, we developed a statistical method, minimum probability flow–Boltzmann Machine Learning (MPF–BML), for performing fast and accurate inference of maximum entropy model parameters, which was applied to genetic sequence data to estimate the fitness landscape for the surface proteins of human immunodeficiency virus and hepatitis C virus. To facilitate seamless use of MPF–BML and encourage more widespread application to data in diverse fields, we present a standalone cross-platform package of MPF–BML which features an easy-to-use graphical user interface. The package only requires the input data (protein sequence data or data of multiple configurations of a complex system with large number of variables) and returns the maximum entropy model parameters. Availability and implementation The MPF–BML software is publicly available under the MIT License at https://github.com/ahmedaq/MPF-BML-GUI. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document