Brain Regions
Recently Published Documents


TOTAL DOCUMENTS

6478
(FIVE YEARS 3058)

H-INDEX

149
(FIVE YEARS 38)

2021 ◽  
Vol 15 ◽  
Author(s):  
Guoqing Wu ◽  
Zhaoshun Jiang ◽  
Yuxi Cai ◽  
Xixue Zhang ◽  
Yating Lv ◽  
...  

Objectives: Delayed neurocognitive recovery (DNR) seriously affects the post-operative recovery of elderly surgical patients, but there is still a lack of effective methods to recognize high-risk patients with DNR. This study proposed a machine learning method based on a multi-order brain functional connectivity (FC) network to recognize DNR.Method: Seventy-four patients who completed assessments were included in this study, in which 16/74 (21.6%) had DNR following surgery. Based on resting-state functional magnetic resonance imaging (rs-fMRI), we first constructed low-order FC networks of 90 brain regions by calculating the correlation of brain region signal changing in the time dimension. Then, we established high-order FC networks by calculating correlations among each pair of brain regions. Afterward, we built sparse representation-based machine learning model to recognize DNR on the extracted multi-order FC network features. Finally, an independent testing was conducted to validate the established recognition model.Results: Three hundred ninety features of FC networks were finally extracted to identify DNR. After performing the independent-sample T test between these features and the categories, 15 features showed statistical differences (P < 0.05) and 3 features had significant statistical differences (P < 0.01). By comparing DNR and non-DNR patients’ brain region connection matrices, it is found that there are more connections among brain regions in DNR patients than in non-DNR patients. For the machine learning recognition model based on multi-feature combination, the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity of the classifier reached 95.61, 92.00, 66.67, and 100.00%, respectively.Conclusion: This study not only reveals the significance of preoperative rs-fMRI in recognizing post-operative DNR in elderly patients but also establishes a promising machine learning method to recognize DNR.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Miaoyi Zhang ◽  
Huan Yu ◽  
Weijun Tang ◽  
Ding Ding ◽  
Jie Tang ◽  
...  

Abstract Background To assess heart rate variability (HRV) among patients with arteriosclerotic cerebral small vessel disease (CSVD) by comparing with control subjects, and to determine whether HRV parameters were related to structural alterations in brain regions involved in autonomic regulation among CSVD patients. Methods We consecutively recruited subjects aged between 50 and 80 years who visited the Stroke Prevention Clinic of our hospital and have completed brain magnetic resonance imaging examination from September 1, 2018 to August 31, 2019. Polysomnography and synchronous analyses of HRV were then performed in all participants. Multivariable binary logistic regression was used to identify the relationship between HRV parameters and CSVD. Participants were invited to further undergo three-dimensional brain volume scan, and the voxel based morphometry (VBM) analysis was used to identify gray matter atrophy. Results Among 109 participants enrolled in this study, 63 were assigned to the arteriosclerotic CSVD group and 46 to the control group. Lower standard deviation of normal-to-normal intervals (SDNN, OR = 0.943, 95% CI 0.903 to 0.985, P = 0.009) and higher ratio of low to high frequency power (LF/HF, OR = 4.372, 95% CI 1.033 to 18.508, P = 0.045) during the sleep period were associated with CSVD, independent of traditional cerebrovascular risk factors and sleep disordered breathing. A number of 24 CSVD patients and 21 controls further underwent three-dimensional brain volume scan and VBM analysis. Based on VBM results, SDNN during the awake time (β = 0.544, 95% CI 0.211 to 0.877, P = 0.001) and the sleep period (β = 0.532, 95% CI 0.202 to 0.862, P = 0.001) were both positively related with gray matter volume within the right inferior frontal gyrus only among CSVD patients. Conclusions Decreased nocturnal HRV is associated with arteriosclerotic CSVD independent of traditional cerebrovascular risk factors and sleep disordered breathing. The structural atrophy of some brain regions associated with cardiac autonomic regulation sheds light on the potential relationship. Trial registration Trial registration number: ChiCTR1800017902. Date of registration: 20 Aug 2018.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph Bryant ◽  
Sanketh Andhavarapu ◽  
Christopher Bever ◽  
Poornachander Guda ◽  
Akhil Katuri ◽  
...  

AbstractThe combined antiretroviral therapy era has significantly increased the lifespan of people with HIV (PWH), turning a fatal disease to a chronic one. However, this lower but persistent level of HIV infection increases the susceptibility of HIV-associated neurocognitive disorder (HAND). Therefore, research is currently seeking improved treatment for this complication of HIV. In PWH, low levels of brain derived neurotrophic factor (BDNF) has been associated with worse neurocognitive impairment. Hence, BDNF administration has been gaining relevance as a possible adjunct therapy for HAND. However, systemic administration of BDNF is impractical because of poor pharmacological profile. Therefore, we investigated the neuroprotective effects of BDNF-mimicking 7,8 dihydroxyflavone (DHF), a bioactive high-affinity TrkB agonist, in the memory-involved hippocampus and brain cortex of Tg26 mice, a murine model for HAND. In these brain regions, we observed astrogliosis, increased expression of chemokine HIV-1 coreceptors CXCR4 and CCR5, neuroinflammation, and mitochondrial damage. Hippocampi and cortices of DHF treated mice exhibited a reversal of these pathological changes, suggesting the therapeutic potential of DHF in HAND. Moreover, our data indicates that DHF increases the phosphorylation of TrkB, providing new insights about the role of the TrkB–Akt–NFkB signaling pathway in mediating these pathological hallmarks. These findings guide future research as DHF shows promise as a TrkB agonist treatment for HAND patients in adjunction to the current antiviral therapies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Miriam Engels ◽  
Manu Kalia ◽  
Sarah Rahmati ◽  
Laura Petersilie ◽  
Peter Kovermann ◽  
...  

High water permeabilities permit rapid adjustments of glial volume upon changes in external and internal osmolarity, and pathologically altered intracellular chloride concentrations ([Cl–]int) and glial cell swelling are often assumed to represent early events in ischemia, infections, or traumatic brain injury. Experimental data for glial [Cl–]int are lacking for most brain regions, under normal as well as under pathological conditions. We measured [Cl–]int in hippocampal and neocortical astrocytes and in hippocampal radial glia-like (RGL) cells in acute murine brain slices using fluorescence lifetime imaging microscopy with the chloride-sensitive dye MQAE at room temperature. We observed substantial heterogeneity in baseline [Cl–]int, ranging from 14.0 ± 2.0 mM in neocortical astrocytes to 28.4 ± 3.0 mM in dentate gyrus astrocytes. Chloride accumulation by the Na+-K+-2Cl– cotransporter (NKCC1) and chloride outward transport (efflux) through K+-Cl– cotransporters (KCC1 and KCC3) or excitatory amino acid transporter (EAAT) anion channels control [Cl–]int to variable extent in distinct brain regions. In hippocampal astrocytes, blocking NKCC1 decreased [Cl–]int, whereas KCC or EAAT anion channel inhibition had little effect. In contrast, neocortical astrocytic or RGL [Cl–]int was very sensitive to block of chloride outward transport, but not to NKCC1 inhibition. Mathematical modeling demonstrated that higher numbers of NKCC1 and KCC transporters can account for lower [Cl–]int in neocortical than in hippocampal astrocytes. Energy depletion mimicking ischemia for up to 10 min did not result in pronounced changes in [Cl–]int in any of the tested glial cell types. However, [Cl–]int changes occurred under ischemic conditions after blocking selected anion transporters. We conclude that stimulated chloride accumulation and chloride efflux compensate for each other and prevent glial swelling under transient energy deprivation.


2021 ◽  
Author(s):  
Anri Hirai ◽  
Ryo Yamazaki ◽  
Atsushi Kobayashi ◽  
Takashi Kimura ◽  
Kei Nomiyama ◽  
...  

Abstract Monoamine neurotransmitters (MAs), including dopamine (DA) and serotonin (5-HT), regulate brain functions such as behavior, memory, and learning. Neonicotinoids are pesticides that are being used more frequently. Neonicotinoid exposure has been observed to produce neurological symptoms, such as altered spontaneous movements and anxiety-like behaviors, which are suspected to be caused by altered MA levels. However, current neurotoxicity tests are not sufficiently sensitive to make these determinations. In this study, we performed some behavior tests and developed a sensitive and accurate analytical method using liquid chromatography-mass spectrometry (LC-MS/MS) to clarify the effects of neonicotinoid administration on MAs in the brain.We orally administered the neonicotinoid imidacloprid (0, 10, and 50 mg/kg body weight) to C57BL/6NCrSlc mice. In behavior tests, the decrease of activity was observed. The LC-MS/MS quantification of MAs in various brain regions by tetrafluoroborate salt of 2,4-diphenyl-pyranylium (DPP) derivatization, which was newly developed in this study, showed a decrease in some MA levels in the olfactory bulb and the striatum.Thus, in this study, we developed a new method for the sensitive detection of MAs by LC/MS using DPP derivatization. In addition, we showed that this sensitive MA quantification is effective in clarifying the neurotoxicity caused by chemical substances.


2021 ◽  
Author(s):  
Xin Di ◽  
Zhiguo Zhang ◽  
Ting Xu ◽  
Bharat B Biswal

Spatially remote brain regions show synchronized activity as typically revealed by correlated functional MRI (fMRI) signals. An emerging line of research has focused on the temporal fluctuations of connectivity, however, its relationships with stable connectivity have not been clearly illustrated. We examined the stable and dynamic connectivity from fMRI data when the participants watched four different movie clips. Using inter-individual correlation, we were able to estimate functionally meaningful dynamic connectivity associated with different movies. Widespread consistent dynamic connectivity was observed for each movie clip as well as their differences between clips. A cartoon movie clip showed higher consistent dynamic connectivity with the posterior cingulate cortex and supramarginal gyrus, while a court drama clip showed higher dynamic connectivity with the auditory cortex and temporoparietal junction, which suggest the involvement of specific brain processing for different movie contents. In contrast, stable connectivity was highly similar among the movie clips, and showed fewer statistical significant differences. The patterns of dynamic connectivity had higher accuracy for classifications of different movie clips than the stable connectivity and regional activity. These results support the functional significance of dynamic connectivity in reflecting functional brain changes, which could provide more functionally related information than stable connectivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert J. Quon ◽  
Michael A. Casey ◽  
Edward J. Camp ◽  
Stephen Meisenhelter ◽  
Sarah A. Steimel ◽  
...  

AbstractThere is growing evidence for the efficacy of music, specifically Mozart’s Sonata for Two Pianos in D Major (K448), at reducing ictal and interictal epileptiform activity. Nonetheless, little is known about the mechanism underlying this beneficial “Mozart K448 effect” for persons with epilepsy. Here, we measured the influence that K448 had on intracranial interictal epileptiform discharges (IEDs) in sixteen subjects undergoing intracranial monitoring for refractory focal epilepsy. We found reduced IEDs during the original version of K448 after at least 30-s of exposure. Nonsignificant IED rate reductions were witnessed in all brain regions apart from the bilateral frontal cortices, where we observed increased frontal theta power during transitions from prolonged musical segments. All other presented musical stimuli were associated with nonsignificant IED alterations. These results suggest that the “Mozart K448 effect” is dependent on the duration of exposure and may preferentially modulate activity in frontal emotional networks, providing insight into the mechanism underlying this response. Our findings encourage the continued evaluation of Mozart’s K448 as a noninvasive, non-pharmacological intervention for refractory epilepsy.


2021 ◽  
Author(s):  
Aarit Ahuja ◽  
Theresa M Desrochers ◽  
David Sheinberg

To engage with the world, we must regularly make predictions about the outcomes of physical scenes. How do we make these predictions? Recent evidence points to simulation - the idea that we can introspectively manipulate rich, mental models of the world - as one possible explanation for how such predictions are accomplished. While theories based on simulation are supported by computational models, neuroscientific evidence for simulation is lacking and many important questions remain. For instance, do simulations simply entail a series of abstract computations? Or are they supported by sensory representations of the objects that comprise the scene being simulated? We posit the latter and suggest that the process of simulating a sequence of physical interactions is likely to evoke an imagery-like envisioning of those interactions. Using functional magnetic resonance imaging, we demonstrate that when participants predict how a ball will fall through an obstacle-filled display, motion-sensitive brain regions are activated. We further demonstrate that this activity, which occurs even though no motion is being sensed, resembles activity patterns that arise while participants perceive the ball's motion. This finding suggests that the process of simulating the ball's movement is accompanied by a sensory representation of this movement. These data thus demonstrate that mental simulations recreate sensory depictions of how a physical scene is likely to unfold.


2021 ◽  
Vol 28 (10) ◽  
pp. 371-389
Author(s):  
Felippe E. Amorim ◽  
Renata L. Chapot ◽  
Thiago C. Moulin ◽  
Jonathan L.C. Lee ◽  
Olavo B. Amaral

Remembering is not a static process: When retrieved, a memory can be destabilized and become prone to modifications. This phenomenon has been demonstrated in a number of brain regions, but the neuronal mechanisms that rule memory destabilization and its boundary conditions remain elusive. Using two distinct computational models that combine Hebbian plasticity and synaptic downscaling, we show that homeostatic plasticity can function as a destabilization mechanism, accounting for behavioral results of protein synthesis inhibition upon reactivation with different re-exposure times. Furthermore, by performing systematic reviews, we identify a series of overlapping molecular mechanisms between memory destabilization and synaptic downscaling, although direct experimental links between both phenomena remain scarce. In light of these results, we propose a theoretical framework where memory destabilization can emerge as an epiphenomenon of homeostatic adaptations prompted by memory retrieval.


2021 ◽  
Author(s):  
Ignazio S Piras ◽  
Matt Huentelman ◽  
Jessica Walker ◽  
Richard Arche ◽  
Michael Glass ◽  
...  

In this study we conducted RNA sequencing on two brain regions (olfactory bulb and amygdala) from subjects who died from COVID-19 or who died of other causes. We found several-fold more transcriptional changes in the olfactory bulb than in the amygdala, consistent with our own work and that of others indicating that the olfactory bulb may be the initial and most common brain region infected. To some extent our results converge with pseudotime analysis towards common processes shared between the brain regions, possibly induced by the systemic immune reaction following SARS-CoV-2 infection. Changes in amygdala emphasized upregulation of interferon-related neuroinflammation genes, as well as downregulation of synaptic and other neuronal genes, and may represent the substrate of reported acute and subacute COVID-19 neurological effects. Additionally, and only in olfactory bulb, we observed an increase in angiogenesis and platelet activation genes, possibly associated with microvascular damages induced by neuroinflammation. Through coexpression analysis we identified two key genes (CAMK2B for the synaptic neuronal network and COL1A2 for the angiogenesis/platelet network) that might be interesting potential targets to reverse the effects induced by SARS-CoV-2 infection. Finally, in olfactory bulb we detected an upregulation of olfactory and taste genes, possibly as a compensatory response to functional deafferentation caused by viral entry into primary olfactory sensory neurons. In conclusion, we were able to identify transcriptional profiles and key genes involved in neuroinflammation, neuronal reaction and olfaction induced by direct CNS infection and/or the systemic immune response to SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document