A flood risk analysis model with topographical inundation and life-loss

2015 ◽  
Vol 168 (3) ◽  
pp. 116-128 ◽  
Author(s):  
Ben Gouldby ◽  
Julien Lhomme ◽  
Sam R. Jamieson ◽  
Dave Hornby ◽  
Stefan Laeger
Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1365 ◽  
Author(s):  
Cai ◽  
Zhu ◽  
Peng ◽  
Wang ◽  
Fan

To quantify the flood risks in cascade dam systems, it is critical to analyze the risk factors and potential breaking failure paths. In this study, Bayesian networks (BNs) were applied to create a flood risk analysis model for a cascade dam system. Expert experiment, historical data, and computational formulas were employed to estimate the prior probability and original conditional probability tables (CPTs) in the BN model; sensitivity analysis was used to ensure the original continuous breaking failure path in the system. To avoid the possible misperceptions of the probability of a certain event, Dam Breach Analysis Model (DB-IWHR) 2014 software and the flood regulation method were used to simulate the dam breaking progress. The posteriori continuous breaking failure paths were obtained, and then the original CPTs were refined based on the new evidence. The proposed method was applied to the Bala-Busigou-Shuangjiangkou (BL-BSG-SJK), which is located upstream of the Dadu River basin in China. The results show that three continuous breaking failure paths could be identified in the researched cascade dam system. A new BN model was created to determine the failure probability of the cascade dam system under the three continuous breaking failure paths. This analytical method may also be useful for other similar cases.


2014 ◽  
Vol 2 (4) ◽  
pp. 2405-2441
Author(s):  
R. Albano ◽  
A. Sole ◽  
J. Adamowski ◽  
L. Mancusi

Abstract. Risk analysis has become a priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk by considering the priority and benefits of possible interventions. Within this context, a flood risk analysis model was developed in this study that is based on GIS, and integrated with a model that assesses the degree of accessibility and operability of strategic emergency response structures in an urban area. The proposed model is unique in that it provides a quantitative estimation of flood risk on the basis of the operability of the strategic emergency structures in an urban area, their accessibility, and connection within the urban system of a city (i.e., connection between aid centres and buildings at risk) in the emergency phase. The results of a case study in the Puglia Region in Southern Italy are described to illustrate the practical applications of this newly proposed approach. The main advantage of the proposed approach is that it allows for the defining of a hierarchy between different infrastructures in the urban area through the identification of particular components whose operation and efficiency are critical for emergency management. This information can be used by decision makers to prioritize risk reduction interventions in flood emergencies in urban areas.


2012 ◽  
Vol 105 ◽  
pp. 64-72 ◽  
Author(s):  
F.L.M. Diermanse ◽  
C.P.M. Geerse

Author(s):  
Niloy Pramanick ◽  
Rituparna Acharyya ◽  
Sandip Mukherjee ◽  
Sudipta Mukherjee ◽  
Indrajit Pal ◽  
...  

2014 ◽  
Vol 2 (2) ◽  
pp. 1637-1670 ◽  
Author(s):  
K. M. de Bruijn ◽  
F. L. M. Diermanse ◽  
J. V. L. Beckers

Abstract. This paper discusses the new method developed to analyse flood risks in river deltas. Risk analysis of river deltas is complex, because both storm surges and river discharges may cause flooding and since the effect of upstream breaches on downstream water levels and flood risks must be taken into account. A Monte Carlo based flood risk analysis framework for policy making was developed, which considers both storm surges and river flood waves and includes hydrodynamic interaction effects on flood risks. It was applied to analyse societal flood fatality risks (the probability of events with more than N fatalities) in the Rhine–Meuse delta.


Sign in / Sign up

Export Citation Format

Share Document