scholarly journals Hemodynamic Patterns and Spectral Analysis of Heart Rate Variability during Dialysis Hypotension

1999 ◽  
Vol 10 (12) ◽  
pp. 2577-2584
Author(s):  
MICHEL G. W. BARNAS ◽  
WALTHER H. BOER ◽  
HEIN A. KOOMANS

Abstract. Intradialytic hypotension, a major source of morbidity during hemodialysis and ultrafiltration, is often accompanied by paradoxical bradycardia. Relatively little is known about the sequential changes in autonomic nervous system activity up to and during the hypotensive episode. Continuous, beat-to-beat measurements of BP and heart rate were made during hemodialysis in patients prone (n = 8) and not prone (n = 11) to develop intradialytic hypotension. Off-line spectral analysis of heart rate variability (HRV) was performed to assess changes in autonomic nervous system activity during dialysis sessions both with and without hypotension. The low frequency (LF) component of HRV is thought to correlate with sympathetic nervous system activity, the high frequency (HF) component with that of the parasympathetic nervous system. In the sessions not complicated by symptomatic hypotension (n = 26), mean arterial BP (MAP) hardly fell, whereas heart rate increased from 77 ± 2 to 89 ± 5 bpm (P < 0.05). The LF component of HRV increased from 45.2 ± 5.0 normalized units (nu) to 59.9 ± 4.9 nu (P < 0.05), whereas the HF component fell from 54.8 ± 5.0 to 40.2 ± 4.4 nu (P < 0.05). These changes agree with compensatory baroreflex-mediated activation of the sympathetic nervous system (and suppressed parasympathetic activity) during ultrafiltration-induced intravascular volume depletion. In the sessions complicated by severe symptomatic hypotension (n = 22), the changes in heart rate and the results of spectral analysis of HRV were similar to those reported above up to the moment of sudden symptomatic (nausea, vomiting, dizziness, cramps) hypotension, whereas MAP had already fallen gradually from 94 ± 3 to 85 ± 3 mmHg (P < 0.05). The sudden further reduction in MAP (to 55 ± 2 mmHg, P < 0.02) was invariably accompanied by bradycardia (heart rate directly before hypotension 90 ± 2 bpm, during hypotension 69 ± 3 bpm, P < 0.002). The LF component of HRV fell from 62.8 ± 4.6 nu directly before to 40.0 ± 3.7 nu (P < 0.05) during hypotension, whereas the HF component increased from 37.9 ± 4.7 to 60.3 ± 3.7 nu (P < 0.05). These findings agree with activation of the cardiodepressor reflex, involving decreased sympathetic and increased parasympathetic nervous system activity, respectively. These findings indicate that activation of the sympatho-inhibitory cardiodepressor reflex (Bezold-Jarisch reflex), which is a physiologic response to a critical reduction in intravascular volume and cardiac filling, is the cause of sudden intradialytic hypotension.

1997 ◽  
Vol 273 (4) ◽  
pp. H1761-H1768 ◽  
Author(s):  
Helen J. Burgess ◽  
John Trinder ◽  
Young Kim ◽  
David Luke

To assess the separate contributions of the sleep and circadian systems to changes in cardiac autonomic nervous system (ANS) activity, 12 supine subjects participated in two 26-h constant routines, which were counterbalanced and separated by 1 wk. One routine did not permit sleep, whereas the second allowed the subjects to sleep during their normal sleep phase. Parasympathetic nervous system activity was assessed with respiratory sinus arrhythmia as measured from the spectral analysis of cardiac beat-to-beat intervals. Sympathetic nervous system activity was primarily assessed with the preejection period as estimated from impedance cardiography, although the 0.1-Hz peak from the spectral analysis of cardiac beat-to-beat intervals, the amplitude of the T wave in the electrocardiogram, and heart rate were also measured. Respiratory sinus arrhythymia showed a 24-h rhythm independent of sleep, whereas preejection period only showed a 24-h rhythm if sleep occurred. Thus the findings indicate that parasympathetic nervous system activity is mostly influenced by the circadian system, whereas sympathetic nervous system activity is mostly influenced by the sleep system.


1998 ◽  
Vol 274 (6) ◽  
pp. H1875-H1884 ◽  
Author(s):  
Dominique Sigaudo ◽  
Jacques-Olivier Fortrat ◽  
Anne-Marie Allevard ◽  
Alain Maillet ◽  
Jean-Marie Cottet-Emard ◽  
...  

Changes in autonomic nervous system activity could be linked to the orthostatic intolerance (OI) that individuals suffer after a spaceflight or head-down bed rest (HDBR). We examined this possibility by assessing the sympathetic nervous system activity during 42 days of HDBR in seven healthy men. Heart rate variability was studied with the use of power spectral analysis, which provided indicators of the sympathetic (SNSi) and parasympathetic (PNSi) nervous system influences on the heart. Urinary catecholamines and the spontaneous baroreflex sensitivity were measured. Urinary catecholamines decreased by 21.3%, showing a decrease in SNSi. Heart rate variability was greatly reduced during 42 days of HDBR with a drop in PNSi but with no significant changes in SNSi. The baroreflex sensitivity was greatly reduced (30.7%) on day 42 of HDBR. These results suggest a dissociation between the catecholamine response and the SNSi of the heart rate. This dissociation could be the consequence of an increase in β-adrenergic receptor density and/or activity induced by a decrease in catecholamines during HDBR. The subjects who suffered from OI also had a greater sympathetic response and much lower baroreflex sensitivity when supine than those who finished the stand test. However, the mean response of all subjects indicated that the sympathetic activity (catecholamine excretion) was probably slightly inhibited during HDBR and could contribute to OI.


Sign in / Sign up

Export Citation Format

Share Document