scholarly journals Colorings of the Graph K ᵐ 2 + Kn

Author(s):  
Le Xuan Hung

In this paper, we characterize chromatically unique, determine list-chromatic number and characterize uniquely list colorability of the graph G = Km 2 + Kn. We shall prove that G is χ-unique, ch(G) = m + n, G is uniquely 3-list colorable graph if and only if 2m + n > 7 and m > 2

2012 ◽  
Vol 21 (1-2) ◽  
pp. 315-322 ◽  
Author(s):  
DAVID SAXTON ◽  
ANDREW THOMASON

We show that the list chromatic number of a simpled-regularr-uniform hypergraph is at least (1/2rlog(2r2) +o(1)) logdifdis large.


2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


10.37236/401 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Penny Haxell ◽  
Jacques Verstraete

Let $H$ be a hypergraph and let $L_v : v \in V(H)$ be sets; we refer to these sets as lists and their elements as colors. A list coloring of $H$ is an assignment of a color from $L_v$ to each $v \in V(H)$ in such a way that every edge of $H$ contains a pair of vertices of different colors. The hypergraph $H$ is $k$-list-colorable if it has a list coloring from any collection of lists of size $k$. The list chromatic number of $H$ is the minimum $k$ such that $H$ is $k$-list-colorable. In this paper we prove that every $d$-regular three-uniform linear hypergraph has list chromatic number at least $(\frac{\log d}{5\log \log d})^{1/2}$ provided $d$ is large enough. On the other hand there exist $d$-regular three-uniform linear hypergraphs with list chromatic number at most $\log_3 d+3$. This leaves the question open as to the existence of such hypergraphs with list chromatic number $o(\log d)$ as $d \rightarrow \infty$.


2000 ◽  
Vol 9 (4) ◽  
pp. 375-380 ◽  
Author(s):  
M. VOIGT

Let G = (V, E) be a graph with n vertices, chromatic number χ(G) and list chromatic number χ[lscr ](G). Suppose each vertex of V(G) is assigned a list of t colours. Albertson, Grossman and Haas [1] conjectured that at least [formula here] vertices can be coloured properly from these lists.Albertson, Grossman and Haas [1] and Chappell [3] proved partial results concerning this conjecture. This paper presents algorithms that colour at least the number of vertices given in the bounds of Albertson, Grossman and Haas, and Chappell. In particular, it follows that the conjecture is valid for all bipartite graphs and that, for every bipartite graph and every assignment of lists with t colours in each list where 0 [les ] t [les ] χ[lscr ](G), it is possible to colour at least (1 − (1/2)t)n vertices in polynomial time. Thus, if G is bipartite and [Lscr ] is a list assignment with [mid ]L(v)[mid ] [ges ] log2n for all v ∈ V, then G is [Lscr ]-list colourable in polynomial time.


10.37236/3228 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Naoki Matsumoto

A graph $G$ is uniquely $k$-colorable if the chromatic number of $G$ is $k$ and $G$ has only one $k$-coloring up to permutation of the colors. A uniquely $k$-colorable graph $G$ is edge-critical if $G-e$ is not a uniquely $k$-colorable graph for any edge $e\in E(G)$. In this paper, we prove that if $G$ is an edge-critical uniquely $3$-colorable planar graph, then $|E(G)|\leq \frac{8}{3}|V(G)|-\frac{17}{3}$. On the other hand, there exists an infinite family of edge-critical uniquely 3-colorable planar graphs with $n$ vertices and $\frac{9}{4}n-6$ edges. Our result gives a first non-trivial upper bound for $|E(G)|$.


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Frédéric Havet ◽  
Andrew King

Graph Theory International audience A natural generalization of graph colouring involves taking colours from a metric space and insisting that the endpoints of an edge receive colours separated by a minimum distance dictated by properties of the edge. In the q-backbone colouring problem, these minimum distances are either q or 1, depending on whether or not the edge is in the backbone. In this paper we consider the list version of this problem, with particular focus on colours in ℤp - this problem is closely related to the problem of circular choosability. We first prove that the list circular q-backbone chromatic number of a graph is bounded by a function of the list chromatic number. We then consider the more general problem in which each edge is assigned an individual distance between its endpoints, and provide bounds using the Combinatorial Nullstellensatz. Through this result and through structural approaches, we achieve good bounds when both the graph and the backbone belong to restricted families of graphs.


2006 ◽  
Vol 306 (23) ◽  
pp. 3078-3082 ◽  
Author(s):  
Saieed Akbari ◽  
Hamid-Reza Fanaı¨

Sign in / Sign up

Export Citation Format

Share Document