scholarly journals MATHEMATICAL AND NUMERICAL MODELING OF POLLUTANT TRANSPORT IN TWO-PHASE HOMOGENEOUS AND TURBULENT FREE SURFACE FLOWS

2021 ◽  
Vol 24 (2) ◽  
pp. 347-362
Author(s):  
M. Ghani
2019 ◽  
Vol 129 ◽  
pp. 80-98 ◽  
Author(s):  
Huabin Shi ◽  
Pengfei Si ◽  
Ping Dong ◽  
Xiping Yu

1994 ◽  
Vol 47 (6S) ◽  
pp. S163-S165
Author(s):  
Douglas G. Dommermuth ◽  
Rebecca C. Y. Mui

Direct numerical simulations and large-eddy simulations of turbulent free-surface flows are currently being performed to investigate the roughening of the surface, and the scattering, radiation, and dissipation of waves by turbulence. The numerical simulation of turbulent free-surface flows is briefly reviewed. The numerical, modeling, and hardware issues are discussed.


2008 ◽  
Vol 608 ◽  
pp. 393-410 ◽  
Author(s):  
D. BERZI ◽  
J. T. JENKINS

A simple two-phase model for steady fully developed flows of particles and water over erodible inclined beds is developed for situations in which the water and particles have the same depth. The rheology of the particles is based on recent numerical simulations and physical experiments, the rheology of the fluid is based on an eddy viscosity, and the interaction between the particles and the fluid is through drag and buoyancy. Numerical solutions of the resulting differential equations and boundary conditions provide velocity profiles of the fluid and particles, the concentration profile of the particles, and the depth of the flow at a given angle of inclination of the bed. Simple approximations permit analytical expressions for the flow velocities and the depth of flow to be obtained that agree with the numerical solutions and those measured in experiments.


2016 ◽  
Vol 136 ◽  
pp. 212-227 ◽  
Author(s):  
J.M. Cubos-Ramírez ◽  
J. Ramírez-Cruz ◽  
M. Salinas-Vázquez ◽  
W. Vicente-Rodríguez ◽  
E. Martinez-Espinosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document