THE PRESENCE OF A RETROTRANSPOSON IN THE PROMOTER REGION OF THE TIV GENE ENCODING FOR SOLUBLE ACID INVERTASE DISTINGUISHES BETWEEN THE SUCROSE AND HEXOSE ACCUMULATING SPECIES OF LYCOPERSICON

2007 ◽  
pp. 429-436
Author(s):  
M. Moy ◽  
N. Dai ◽  
S. Cohen ◽  
R. Hadas ◽  
D. Granot ◽  
...  
2021 ◽  
Vol 41 (6) ◽  
Author(s):  
Hai-Li Zhong ◽  
Yang Liu ◽  
Yuan-Dong Nie ◽  
Zhi Wang ◽  
Li Zhu ◽  
...  

2003 ◽  
Vol 63 (2) ◽  
pp. 125-129 ◽  
Author(s):  
Hiroshi Hashizume ◽  
Koji Tanase ◽  
Katsuhiro Shiratake ◽  
Hitoshi Mori ◽  
Shohei Yamaki

1999 ◽  
Vol 124 (4) ◽  
pp. 381-388 ◽  
Author(s):  
Riccardo Lo Bianco ◽  
Mark Rieger ◽  
She-Jean S. Sung

Terminal portions of `Flordaguard' peach roots [Prunus persica (L.) Batsch] were divided into six segments and the activities of NAD+-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX), sucrose synthase (SS), soluble acid invertase (AI), and soluble neutral invertase (NI) were measured in each segment 10, 15, and 20 days after seed germination. The same type of experiment was conducted with terminal portions of `Flordaguard' and `Nemaguard' peach shoots except that one of the six segments consisted of the leaflets surrounding the apex. Independent of the age of individual roots, activities of SDH and AI were consistently highest in the meristematic portion and decreased with tissue maturation. In shoots, AI was the most active enzyme in the elongating portion subtending the apex, whereas SDH was primarily associated with meristematic tissues. A positive correlation between SDH and AI activities was found in various developmental zones of roots (r = 0.96) and shoots (r = 0.90). Sorbitol and sucrose contents were low in roots regardless of distance from tip, while sucrose showed a decreasing trend with distance and sorbitol, fructose, and glucose increased with distance from the meristem in shoots. Activity of SDH in internodes, but not apices, correlated with shoot elongation rate of both cultivars, whereas activities of other enzymes did not correlate with shoot elongation rate. We conclude that AI and SDH are the predominant enzymes of carbohydrate catabolism and the best indicators of sink growth and development in vegetative sinks of peach.


2000 ◽  
Vol 27 (11) ◽  
pp. 1021 ◽  
Author(s):  
Hongmei Ma ◽  
Henrik H. Albert ◽  
Robert Paull ◽  
Paul H. Moore

Transgenic sugarcane (Saccharum officinarum L.) lines were created to express altered invertase isoform activity to elucidate the role(s) of invertase in the sucrose accumulation process. A sugarcane soluble acid invertase cDNA (SCINVm, AF062734) in the antisense orientation was used to decrease invertase activity. The Saccharomyces cerevisiae invertase gene (SUC2), fused with appropriate targeting elements, was used to increase invertase activity in the apoplast, cytoplasm and vacuole. A callus/liquid culture system was established to evaluate change in invertase activity and sugar concentration in the transgenic lines. Increased invertase activity in the apoplast led to rapid hydrolysis of sucrose and rapid increase of hexose in the medium. The cellular hexose content increased dramatically and the sucrose level decreased. Cells with higher cytoplasmic invertase activity did not show a significant change in the sugar composition in the medium, but did significantly reduce the sucrose content in the cells. Transformation with the sugarcane antisense acid invertase gene produced a cell line with moderate inhibition of soluble acid invertase activity and a 2-fold increase in sucrose accumulation. Overall, intracellular and extracellular sugar composition was very sensitive to the change in invertase activities. Lowering acid invertase activity increased sucrose accumulation.


2008 ◽  
Vol 36 (3) ◽  
pp. 611-617 ◽  
Author(s):  
Hongmei Tian ◽  
Qingguo Kong ◽  
Yanqing Feng ◽  
Xiyan Yu

2017 ◽  
Vol 52 (4) ◽  
pp. 906-915 ◽  
Author(s):  
Renjie Li ◽  
Jingyu Li ◽  
Xiaojun Liao ◽  
Yongtao Wang

1992 ◽  
Vol 117 (2) ◽  
pp. 274-278 ◽  
Author(s):  
Takaya Moriguchi ◽  
Kazuyuki Abe ◽  
Tetsuro Sanada ◽  
Shohei Yamaki

Soluble sugar content and activities of the sucrose-metabolizing enzymes sucrose synthase (SS) (EC 2.4.1.13), sucrose-phosphate synthase (SPS) (EC 2.4.1.14), and acid invertase (EC 2.4.1.26) were analyzed in the pericarp of fruit from pear cultivars that differed in their potential to accumulate sucrose to identify key enzymes involved in sucrose accumulation in Asian pears. The Japanese pear `Chojuro' [Pyrus pyrifolia (Burro. f.) Nakai] was characterized as a high-sucrose-accumulating type based on the analysis of mature fruit, while the Chinese pear `Yali' (P. bretschneideri Rehd.) was a low-sucrose-accumulating type throughout all developmental stages. The activity of SS and SPS in `Chojuro' increased during maturation concomitant with sucrose accumulation, whereas the activity of these enzymes in `Yali' did not increase during maturation. The activity of SS and SPS in the former were seven and four times, respectively, higher than those in the latter at the mature stage. Further, among 23 pear cultivars, SS activity was closely correlated with sucrose content, while SPS activity was weakly correlated. Soluble acid invertase activity in `Chojuro' and `Yali' decreased with fruit maturation, but the relationships between soluble invertase activity and sucrose content were not significant. The results indicate that SS and SPS are important determinants of sucrose accumulation in Asian pear fruit and that a decrease of soluble acid invertase activity is not absolutely required for sucrose accumulation.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 420C-420
Author(s):  
Gene Lester ◽  
Luis Saucedo Arias ◽  
Miguel Gomez-Lim

Muskmelon [Cucumis melo L. (Reticulatus Group)] fruit sugar content is the single most important consumer preference attribute. During fruit ripening, sucrose accumulates when soluble acid invertase (AI) activity is less then sucrose phosphate synthase (SPS) activity. To genetically heighten fruit sugar content, knowledge of sugar accumulation during fruit development in conjunction with AI and SPS enzyme activities and their peptide immunodetection profiles is needed. Two netted muskmelon cultivars [`Valley Gold' (VG), a high sugar accumulator, and `North Star' (NS), a low sugar accumulator] with similar maturity indices were assayed for fruit sugars, AI, and SPS activity and immunodetection of AI and SPS polypeptides following 2, 5, 10, 15, 20, 25, 30, 35, and 40 (abscission) days after anthesis (DAA). Both cultivars, grown in spring and fall, showed similar total sugar accumulation profiles. Total sugars increased 1.5 fold, from 2 through 5 DAA and then remained unchanged until 30 DAA. From 30 DAA until abscission, total sugar content increased, with VG accumulating significantly more sugar then NS. In both cultivars, during both seasons, sucrose was detected at 2 DAA, which coincided with higher SPS activity than AI activity. At 5 through 25 DAA, SPS activity was less then AI activity resulting in little or no sucrose detection. It was not until 30 DAA that SPS activity was greater than AI activity resulting in increased sucrose accumulation. VG at abscission had higher total sugar content and SPS activity and lower AI activity than NS. Total polypeptides from both cultivars 2 through 40 DAA, were immunodetected with antibodies: anti-AI and anti-SPS. NS had Al isoforms bands at 75, 52, 38, and 25 kDa that generally decreased wtih DAA. One isoform at 52 kDa remained detectable up to anthesis (40 DAA) VG had the same four Al isoforms, all decreased with DAA and became undetectable by 20 DAA. It is unclear if one or all AI isoforms correspond with detected enzyme activity. VG and NS had one SPS band at 58 kDa that increased with DAA and concomitantly with SPS activity. VG had a more intense SPS polypeptide band at abscission then did NS. Thus, netted muskmelon sugar accumulation may be increased by selecting for cultivars with a specific number of AI isoforms, which are down-regulated, and with high SPS activity during fruit ripening.


Sign in / Sign up

Export Citation Format

Share Document