scholarly journals Corrosion of diffusion iron–zinc coatings (δ-phase) in an alkaline medium

2016 ◽  
Vol 870 ◽  
pp. 404-408 ◽  
Author(s):  
R.G. Galin ◽  
D.A. Zakharyevich ◽  
S.V. Rushchits

The results of the studies of phase formation and the structural state of diffusional zinc coatings formed in zinc powder with nanocrystallized surface of the particles are presented. The sequence of iron-zinc phases formation during the process has been established, which is the reciprocal of those obtained during the annealing of "hot dip" coatings. The microstructure of δ-phase in the coating, a change in its texture and structural parameters through the thickness of the coating have been studied.


Author(s):  
L. A. Giannuzzi ◽  
A. S. Ramani ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

The δ phase is a Zn-rich intermetallic, having a composition range of ∼ 86.5 - 92.0 atomic percent Zn, and is stable up to 665°C. The stoichiometry of the δ phase has been reported as FeZn7 and FeZn10 The deviation in stoichiometry can be attributed to variations in alloy composition used by each investigator. The structure of the δ phase, as determined by powder x-ray diffraction, is hexagonal (P63mc or P63/mmc) with cell dimensions a = 1.28 nm, c = 5.76 nm, and 555±8 atoms per unit cell. Later work suggested that the layer produced by hot-dip galvanizing should be considered as two distinct phases which are characterized by their morphological differences, namely: the iron-rich region with a compact appearance (δk) and the zinc-rich region with a columnar or palisade microstructure (δp). The sub-division of the δ phase was also based on differences in diffusion behavior, and a concentration discontinuity across the δp/δk boundary. However, work utilizing Weisenberg photographs on δ single crystals reported that the variation in lattice parameters with composition was small and hence, structurally, the δk phase and the δp phase were the same and should be thought of as a single phase, δ. Bastin et al. determined the average cell dimensions to be a = 1.28 nm and c = 5.71 nm, and suggested that perhaps some kind of ordering process, which would not be observed by x-ray diffraction, may be responsible for the morphological differences within the δ phase.


2012 ◽  
Vol 3 (2) ◽  
pp. 131-133
Author(s):  
ANNAPURNA NOWDURI ◽  
◽  
Apparao Babu Duggada ◽  
Vijaya Raju Kurimella

Author(s):  
Hayette Faid

AbstractIn this work, Zn-Ni alloys have been deposited on steel from sulfate bath, by electrodeposition method. The effect of Zn content on deposits properties was studied by cyclic voltammetry (CV), chronoaperometry (CA), linear stripping voltammetry (ALSV) and diffraction (XRD) and scanning electronic microscopy (SEM). The corrosion behavior in 3.5 wt. NaCl solution was examined using anodic polarization test and electrochemical impedance spectroscopy. X-ray diffraction of show that Zn-Ni alloys structure is composed of δ phase and γ phase, which increase with the decrease of Zn content in deposits. Results show that deposits obtained from bath less Zn2+ concentration exhibited better corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document