ni alloys
Recently Published Documents


TOTAL DOCUMENTS

2527
(FIVE YEARS 225)

H-INDEX

72
(FIVE YEARS 7)

2022 ◽  
Vol 277 ◽  
pp. 125524
Author(s):  
Fernando Meneses ◽  
Julieta S. Riva ◽  
Silvia E. Urreta ◽  
Paula G. Bercoff

2022 ◽  
pp. 152506
Author(s):  
Min Hee Jeong ◽  
Hokyun Rho ◽  
Mina Park ◽  
Dong Yeong Kim ◽  
Hyunjung Lee ◽  
...  

2021 ◽  
Vol 413 ◽  
pp. 136-145
Author(s):  
Ujjal Sarder ◽  
Tumpa R. Paul ◽  
Irina V. Belova ◽  
Graeme E. Murch

In this paper, the diffusion isotope effect and diffusion mechanism are investigated by means of molecular dynamics simulations in two liquid alloys, Ni-Ag and Ni-Cu. The values for the diffusion isotope effect parameter allow for the estimate of the number of atoms which are moving cooperatively in a basic diffusion event as experienced by a given atomic species. It is shown that the composition dependence of ND is typically very small. However, the temperature dependence of this parameter is much more pronounced. In addition, it is shown that, on average, in these alloys and temperatures considered, ND is limited to the range: 5<ND<17. This is consistent with results of molecular dynamics simulations on the average coordination number calculations. This would suggest that, together with a given atom, depending on temperature, the neighbouring atoms are all involved in the basic diffusion event.


2021 ◽  
pp. 163160
Author(s):  
Hui Tian ◽  
Hongli Suo ◽  
Yaotang Ji ◽  
Xufeng Wang ◽  
Lin Ma ◽  
...  

2021 ◽  
Vol 33 (6) ◽  
Author(s):  
Andrew M. Mullis

AbstractAl-Ni alloys (for Ni < 45 at.%) show a unique property in that, over at least part of the accessible undercooling range, the recalescence velocity measured in electromagnetically levitated samples is observed to decrease as the undercooling increases. This result has been subject to careful validation, including microgravity experiments utilising the TEMPUS levitation facility on-board the International Space Station (ISS). In these experiments, anomalous growth is observed to coincide with a recalescence morphology comprising multiple circular growth fronts [Herlach et al. Phys. Rev. Mat. 3, 073,402 (2019)], termed “scales”. In this paper we present an analysis of high speed video data from the ISS experiments in which we show that such scale-like growth is consistent with a recalescence front that is initially confined to a thin layer on the surface of the sample. This then nucleates a slower, radial inward growth, which is consistent with microstructures observed in Al-Ni droplets. We show that such surface recalescence would be favoured for samples which were surface enriched in Ni, wherein the recalescence velocity (at fixed nucleation temperature) increases rapidly with Ni-concentration. Moreover, it is shown that the anomalous velocity behaviour can be matched in all compositions studied if the surface enhancement in Ni is a linear function of the nucleation temperature with a gradient of 0.03 at.% K−1. Analysis of historical results from the literature indicates that such surface Ni-enhancement may have been present, but overlooked, in other experiments on Al-rich Al-Ni droplets.


2021 ◽  
Vol 189 ◽  
pp. 465-475
Author(s):  
Aaron A. Ahles ◽  
Jonathan D. Emery ◽  
David C. Dunand

2021 ◽  
Vol 398 ◽  
pp. 139339
Author(s):  
Sabrina Patricia Rosoiu ◽  
Stefania Costovici ◽  
Calin Moise ◽  
Aurora Petica ◽  
Liana Anicai ◽  
...  

Author(s):  
Tiffany Wu ◽  
A. Plotkowski ◽  
A. Shyam ◽  
David C. Dunand
Keyword(s):  

2021 ◽  
Author(s):  
Chun-Mei Li ◽  
Shun-Jie Yang ◽  
Jin-Ping Zhou

Abstract The alloying and magnetic disordering effects on the site occupation, elastic property, and phase stability of Co2 YGa (Y=Cr, V, and Ni) shape memory alloys are systematically investigated by using the first-principles exact muffin-tin orbitals method. It is shown that with increasing the magnetic disordering degree (y), their tetragonal shear elastic constant C' ((C 11 - C 12)/2) of the L21 phase decreases whereas the elastic anisotropy (A) increases, and upon tetragonal distortions the cubic phase gets more and more unstable. Co2CrGa and Co2VGa alloys with y ≥ 0.2 thus can show the martensitic transformation (MT) from L21 to D022 as well as Co2NiGa. In off-stoichiometric alloys, the site preference is controlled by both the alloying and magnetic effects. At the FM state, the excess Ga atom always tends to take the Y sublattice, whereas the excess Co atom favors the Y site when Y=Cr, and the excess Y atom prefers the Co site when Y=Ni. The Ga-deficient Y=V alloys can occur the MT also at the FM state by means of Co or V doping, and the MT temperature (T M ) should increase with their addition. In the corresponding FM Y=Cr alloys, nevertheless, with Co or Cr substituting for Ga, the reentrant MT (RMT) from D022 to L21 is promoted and then T M for the RMT should decrease. The alloying effect on the MT of these alloys is finally well explained by means of the Jahn-Teller effect at the paramagnetic (PM) state. At the FM state, it may originate from the competition between the austenite and martensite about their strength of the covalent banding between Co and Ga as well as Y and Ga.


Sign in / Sign up

Export Citation Format

Share Document