scholarly journals A New Three-Dimensional Chaotic System with Constant Exponent Spectrum: Analysis, Synchronization and Circuit Implementation

2016 ◽  
Vol 11 (5) ◽  
pp. 494-511 ◽  
Author(s):  
Jian Jiang ◽  
◽  
Qing Qing Wu
Optik ◽  
2015 ◽  
Vol 126 (7-8) ◽  
pp. 765-768 ◽  
Author(s):  
Wu-jie Zhou ◽  
Zhong-peng Wang ◽  
Ming-wei Wu ◽  
Wei-hong Zheng ◽  
Jian-feng Weng

2006 ◽  
Vol 55 (8) ◽  
pp. 4005
Author(s):  
Wang Fan-Zhen ◽  
Qi Guo-Yuan ◽  
Chen Zeng-Qiang ◽  
Zhang Yu-Hui ◽  
Yuan Zhu-Zhi

2017 ◽  
Vol 27 (04) ◽  
pp. 1850066 ◽  
Author(s):  
Viet-Thanh Pham ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Tomasz Kapitaniak

Chaotic systems with a curve of equilibria have attracted considerable interest in theoretical researches and engineering applications because they are categorized as systems with hidden attractors. In this paper, we introduce a new three-dimensional autonomous system with cubic equilibrium. Fundamental dynamical properties and complex dynamics of the system have been investigated. Of particular interest is the coexistence of chaotic attractors in the proposed system. Furthermore, we have designed and implemented an electronic circuit to verify the feasibility of such a system with cubic equilibrium.


2013 ◽  
Vol 392 ◽  
pp. 232-236
Author(s):  
Shu Min Duan ◽  
Guo Zeng Wu

A new three-dimensional chaotic system is presented in this paper. Some basic dynamical Properties of this chaotic system are investigated by means of Poincaré mapping, Lyapunov exponents and bifurcation diagram. The dynamical behaviours of this system are proved not only by performing numerical simulation and brief theoretical analysis but also by conducting an electronic circuit implementation. It is new physical phenomenon that the Poincaré mapping of this system is a group of parallel lines.


2004 ◽  
Vol 14 (04) ◽  
pp. 1395-1403 ◽  
Author(s):  
WENBO LIU ◽  
GUANRONG CHEN

Recently, we have investigated a new chaotic system of three-dimensional autonomous quadratic ordinary differential equations, and found that the system visually displays a four-scroll chaotic attractor confirmed by both numerical simulations and circuit implementation. In this paper, we further study the following question: Is it really true that this system can generate a four-scroll chaotic attractor, or is it only a numerical artifact? By a more careful theoretical analysis along with some further numerical simulations, we conclude that the four-scroll chaotic attractor of this system, which we observed on both computer and oscilloscope, cannot actually exist in theory. The fact is that this system has two co-existing two-scroll chaotic attractors that are arbitrarily close in the phase space for some system parameters, therefore extremely tiny numerical round-off errors or signal fluctuations will nudge the system orbit to switch from one attractor to another, thereby forming the seemingly single four-scroll chaotic attractor on screen display.


2016 ◽  
Vol 26 (08) ◽  
pp. 1650139 ◽  
Author(s):  
Viet-Thanh Pham ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Sundarapandian Vaidyanathan ◽  
Tomasz Kapitaniak ◽  
...  

The presence of hidden attractors in dynamical systems has received considerable attention recently both in theory and applications. A novel three-dimensional autonomous chaotic system with hidden attractors is introduced in this paper. It is exciting that this chaotic system can exhibit two different families of hidden attractors: hidden attractors with an infinite number of equilibrium points and hidden attractors without equilibrium. Dynamical behaviors of such system are discovered through mathematical analysis, numerical simulations and circuit implementation.


Sign in / Sign up

Export Citation Format

Share Document