electronic circuit
Recently Published Documents


TOTAL DOCUMENTS

1137
(FIVE YEARS 228)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
Soumyajit Seth ◽  
Grzegorz Kudra ◽  
Krzysztof Witkowski ◽  
Jan Awrejcewicz

In this paper, we have shown the electronic circuit equivalence of a mechanical system consists of two oscillators coupled with each other. The mechanical design has the effects of the magnetic, resistance forces and the spring constant of the system is periodically varying. We have shown that the system’s state variables, such as the displacements and the velocities, under the effects of different forces, lead to some nonlinear behaviors, like a transition from the fixed point attractor to the chaotic attractor through the periodic and quasi-periodic attractors. We have constructed the equivalent electronic circuit of this mechanical system and have verified the numerically obtained behaviors using the electronic circuit.


Author(s):  
Andreyna Sárila Ramos Ferreira ◽  
Débora Debiaze De Paula ◽  
Paulo Jefferson Dias de Oliveira Evald ◽  
Rodrigo Zelir Azzolin

With the increasing use of equipment that demand electric drive systems, the need for new systems that meet requirements of compactness, versatility, safety and low cost has increased. The IRAM module is an electronic circuit that provides a driver for DC and AC motors, being extremely compact and presents high performance. In this context, this work contributes to the power electronics area, presenting a design and construction of a low cost drive system, based on IRAM module, developed for individual or simultaneous drive, up to two DC motors. To carry out the experiments, DC motors responsible for moving a welding robot, were used. Experimental results are presented to shown the feasibility of using this system.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 44
Author(s):  
Yun-Gyeong Oh ◽  
Woo-Young Choi ◽  
Jung-Min Kwon

This paper proposes a step-up DC–DC converter for a power electronic circuit for standalone photovoltaic systems with battery energy storages. The proposed DC–DC converter effectively converts low DC battery voltage into high DC-link voltage. It operates with soft-switching characteristics, which can reduce switching power losses. The proposed converter operates without output voltage feedback, which simplifies its control design. The operation principle of the proposed converter was described, along with the overall system configuration. The experimental results were discussed for the 500-W prototype system using a 12-V lead-acid battery.


Author(s):  
Adil Elrayah ◽  
Ausabah I.A. Ahmed ◽  
Abdlrasool Jabbar

Designing of mining exclusive electronic circuit, safety for work environment is vital and important. The system devices contained transmitter block, which are containing computer monitoring software and internet modem. The other one is receiver block which is included explosive circuit and their components (i.e., a digital component mobile phone, ICs, and detector). To control the operation steps process used software program written with C++ language. The system was successfully built and designed. Besides that, it could capabilities of components set in the designed circuit. Moreover, the circuit and their components were operated carefully according to program sequence. The results are achieved the general objectives of the research. Also, it was match standards, specified in national standards for performances and appearances of such devices.


2021 ◽  
Vol 1 (1) ◽  
pp. 49-55
Author(s):  
Abdallah Elwakeel ◽  
Saad Ahmed ◽  
Abdalla Zein Eldin ◽  
Loai Nasrat

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3315
Author(s):  
Othman Abdullah Almatroud ◽  
Victor Kamdoum Tamba ◽  
Giuseppe Grassi ◽  
Viet-Thanh Pham

Oscillations and oscillators appear in various fields and find applications in numerous areas. We present an oscillator with infinite equilibria in this work. The oscillator includes only nonlinear elements (quadratic, absolute, and cubic ones). It is different from common oscillators, in which there are linear elements. Special features of the oscillator are suitable for secure applications. The oscillator’s dynamics have been discovered via simulations and an electronic circuit. Chaotic attractors, bifurcation diagrams, Lyapunov exponents, and the boosting feature are presented while measurements of the implemented oscillator are reported by using an oscilloscope. We introduce a random number generator using such an oscillator, which is applied in biomedical image encryption. Moreover, the security and performance analysis are considered to confirm the correctness of encryption and decryption processes.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3247
Author(s):  
M. Isabel Dieste-Velasco

In this study, machine learning techniques based on the development of a pattern–recognition neural network were used for fault diagnosis in an analog electronic circuit to detect the individual hard faults (open circuits and short circuits) that may arise in a circuit. The ability to determine faults in the circuit was analyzed through the availability of a small number of measurements in the circuit, as test points are generally not accessible for verifying the behavior of all the components of an electronic circuit. It was shown that, despite the existence of a small number of measurements in the circuit that characterize the existing faults, the network based on pattern-recognition functioned adequately for the detection and classification of the hard faults. In addition, once the neural network has been trained, it can be used to analyze the behavior of the circuit versus variations in its components, with a wider range than that used to develop the neural network, in order to analyze the ability of the ANN to predict situations different from those used to train the ANN and to extract valuable information that may explain the behavior of the circuit.


2021 ◽  
Vol 29 (6) ◽  
pp. 927-942
Author(s):  
Nikita Egorov ◽  
◽  
Vladimir Ponomarenko ◽  
Sofia Melnikova ◽  
Ilya Sysoev ◽  
...  

This work aims to show that long transient processes in mesascale models of thalamocortical brain network can appear in very general case, in particular for different number of elements in the ensemble (different level of detalization) and different initial phase of external driving, with these regimes surviving at small variations of number and structure of couplings. Methods. Thalamocortical brain networks are modelled using electronic circuit realized using computer SPICE eluating software. FitzHugh – Nagumo analog generator is used as a single circuit element. Results. Long quasiregular and nonregular oscillation processes with stationary amplitude were shown to occur in ensembles of 14, 28 and 56 model FitzHug – Nagumo generators. The dependency of transient process length on the external driving initial phase and particular coupling matrix structure was studied. Conclusion. The proposed electronic models of thalamocortical system were proved to reproduce the pathological regimes of brain activity in similar way despite the number of elements in the circuit, connectivity matrix and initial driving phase.


MAUSAM ◽  
2021 ◽  
Vol 60 (3) ◽  
pp. 349-352
Author(s):  
M. I. ANSARI ◽  
K. C. SAI KRISHNAN

This paper is an attempt to design and develop an electronic circuit for Quadrature Oscillator, by using locally available components, to be used in servicing of display units for maintenance of a network of 14 Nos. of SAMEER R/Ts in IMD’s upper air network of 39 radiosonde radiowind observation system.


Sign in / Sign up

Export Citation Format

Share Document