Spectrum Analysis and Circuit Implementation of a New 3D Chaotic System with Novel Chaotic Attractors

2010 ◽  
Vol 27 (2) ◽  
pp. 020507
Author(s):  
Dong Gao-Gao ◽  
Zheng Song ◽  
Tian Li-Xin ◽  
Du Rui-Jin
2011 ◽  
Vol 255-260 ◽  
pp. 2018-2022 ◽  
Author(s):  
Jian Liang Zhu ◽  
Yu Jing Wang ◽  
Shou Qiang Kang

In order to generate complex chaotic attractors, a six-dimensional chaotic system is designed, which contains six parameters and each equation contains a nonlinear product term. When its parameters satisfy certain conditions, the system is chaotic. By Matlab numerical simulation, chaotic attractor and relevant Lyapunov exponents spectrum can be obtained, which validates that the system is chaotic. And, time domain waveform and power spectrum are shown. Finally, the implementation circuit of this system is designed, and circuit simulation can be done by using Multisim. Circuit simulation result is identical to system simulation completely. The circuit has a practical significance in secrecy communication and correlative fields.


2013 ◽  
Vol 340 ◽  
pp. 760-766 ◽  
Author(s):  
Zi Long Tang ◽  
Si Min Yu

This paper presents a new approach for generating multi-scroll chaotic attractors. First, a new double scroll chaotic system with piecewise linearity and invariance under the transformationis introduced. Then, by using the even-symmetric step-wave sequence switching control method in this system to extend the number of saddle-focus points of index 2, the intended multi-scroll chaotic attractors can be obtained. A circuit for generating multi-scroll chaotic attractors is designed, and the experimental results are also given, confirming the consistency of the theory design and circuit implementation.


2012 ◽  
Vol 588-589 ◽  
pp. 1251-1254 ◽  
Author(s):  
Jian Liang Zhu ◽  
Chun Yu Yu

In order to generate more complex chaotic attractors, a seven-dimensional chaotic system is constructed, and relevant chaotic attractors can be obtained by Matlab numerical simulation. Lyapunov exponents validate that the system is chaotic. Implementation circuit of this system is designed, and circuit simulation can be done by using Multisim. Circuit simulation result is identical to system simulation completely. Chaotic behavior of the system is proved farther. A new chaotic signal source is provided for practical application based on chaos such as secrecy communication and signal encryption fields.


2017 ◽  
Vol 27 (04) ◽  
pp. 1850066 ◽  
Author(s):  
Viet-Thanh Pham ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Tomasz Kapitaniak

Chaotic systems with a curve of equilibria have attracted considerable interest in theoretical researches and engineering applications because they are categorized as systems with hidden attractors. In this paper, we introduce a new three-dimensional autonomous system with cubic equilibrium. Fundamental dynamical properties and complex dynamics of the system have been investigated. Of particular interest is the coexistence of chaotic attractors in the proposed system. Furthermore, we have designed and implemented an electronic circuit to verify the feasibility of such a system with cubic equilibrium.


2014 ◽  
Vol 716-717 ◽  
pp. 1346-1351
Author(s):  
Jian Liang Zhu ◽  
Jiang Dong ◽  
Hua Qiang Gao

The chaotic characteristics of high-dimensional chaotic system are more complex, so the design of chaotic system with higher dimension has become a leading subject of chaos theory. In this paper, we constructed a nine-dimensional eight-order chaotic system. Matlab simulation of system is performed and Lyapunov exponents are figured out, which proved more complex dynamical behaviors. And the corresponding hardware circuit is designed. Multisim simulation results of the circuit coincide with Matlab simulation of the system completely, showing the same chaotic attractors. The consistent results verified the realizability of system. Therefore, the system can provide a more secure encryption source for information encryption.


2004 ◽  
Vol 14 (04) ◽  
pp. 1395-1403 ◽  
Author(s):  
WENBO LIU ◽  
GUANRONG CHEN

Recently, we have investigated a new chaotic system of three-dimensional autonomous quadratic ordinary differential equations, and found that the system visually displays a four-scroll chaotic attractor confirmed by both numerical simulations and circuit implementation. In this paper, we further study the following question: Is it really true that this system can generate a four-scroll chaotic attractor, or is it only a numerical artifact? By a more careful theoretical analysis along with some further numerical simulations, we conclude that the four-scroll chaotic attractor of this system, which we observed on both computer and oscilloscope, cannot actually exist in theory. The fact is that this system has two co-existing two-scroll chaotic attractors that are arbitrarily close in the phase space for some system parameters, therefore extremely tiny numerical round-off errors or signal fluctuations will nudge the system orbit to switch from one attractor to another, thereby forming the seemingly single four-scroll chaotic attractor on screen display.


2021 ◽  
Vol 2021 ◽  
pp. 1-8 ◽  
Author(s):  
Juan Liu ◽  
Xuefeng Cheng ◽  
Ping Zhou

In this study, a modified fractional-order Lorenz chaotic system is proposed, and the chaotic attractors are obtained. Meanwhile, we construct one electronic circuit to realize the modified fractional-order Lorenz chaotic system. Most importantly, using a linear resistor and a fractional-order capacitor in parallel coupling, we suggested one chaos synchronization scheme for this modified fractional-order Lorenz chaotic system. The electronic circuit of chaos synchronization for modified fractional-order Lorenz chaotic has been given. The simulation results verify that synchronization scheme is viable.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed ◽  
Bilal Naji Alhasnawi

In this paper, a new fractional order chaotic system without equilibrium is proposed, analytically and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigations were used to describe the system’s dynamical behaviors including the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov exponents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attractors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive control theory was developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state variables for the master and slave. Consequently, the update laws of the slave parameters are obtained, where the slave parameters are assumed to be uncertain and are estimated corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results were obtained by MATLAB and the Arduino Due boards, respectively, with a good consistency between the simulation results and the experimental results, indicating that the new fractional order chaotic system is capable of being employed in real-world applications.


2021 ◽  
Vol 146 ◽  
pp. 110773
Author(s):  
Dengwei Yan ◽  
Lidan Wang ◽  
Shukai Duan ◽  
Jiaojiao Chen ◽  
Jiahao Chen

Sign in / Sign up

Export Citation Format

Share Document