scholarly journals An Artificial Neural Network Framework for Pedestrian Walking Behavior Modeling and Simulation

2020 ◽  
Vol 5 ◽  
Author(s):  
Peter Kielar ◽  
André Borrmann

Movement behavior models of pedestrian agents form the basis of computational crowd simulations. In contemporary research, a large number of models exist. However, there is still no walking behavior model that can address the various influence factors of movement behavior holistically. Thus, we endorse the use of artificial neural networks to develop walking behavior models because machine learning methods can integrate behavioral factors efficiently, automatically, and data-driven. In this paper, we support this approach by providing a framework that describes how to include artificial neural networks into a pedestrian research context. The framework comprises 5 phases: data, replay, training, simulation, and validation. Furthermore, we describe and discuss a prototype of the framework.

Author(s):  
Ken Saito ◽  
Minami Kaneko ◽  
Fumio Uchikoba

This chapter explains how the MEMS microrobot system could perform the walking behavior of ants. MEMS microrobot system consists of micro-mechanical systems and micro-electro systems. The micro-mechanical systems mimic the alternating tripod gait of an ant by the shape memory alloy-type rotary actuator and the link mechanism. The micro-electro systems mimic the electrical activity of biological neural networks using the artificial neural networks IC. The artificial neural networks IC generates the driving pulses of shape memory alloy-type rotary actuator without using software programs. The micro-mechanical systems and micro-electro systems are integrated as a robot system. As a result, the authors show that the MEMS microrobot system could perform the ant-like walking behavior with a speed of 20 mm/min. The MEMS microrobot system was 0.079 g in weight, 4 mm width, 4 mm length, and 5 mm height in size. The robot system needs only the electrical power source as an external device.


Author(s):  
Kobiljon Kh. Zoidov ◽  
◽  
Svetlana V. Ponomareva ◽  
Daniel I. Serebryansky ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document