scholarly journals Solution of a functional equation on compact groups using Fourier analysis

Author(s):  
Abdellatif Chahbi ◽  
Brahim Fadli ◽  
Samir Kabbaj

Let \(G\) be a compact group, let \(n \in N\setminus \{0,1\}\) be a fixed element and let \(\sigma\) be a continuous automorphism on \(G\) such that \(\sigma^n=I\). Using the non-abelian Fourier transform, we determine the non-zero continuous solutions \(f:G \to C\) of the functional equation \[ f(xy)+\sum_{k=1}^{n-1}f(\sigma^k(y)x)=nf(x)f(y),\ x,y \in G,\] in terms of unitary characters of \(G\).

2017 ◽  
Vol 9 (1) ◽  
pp. 45-52
Author(s):  
Iz-iddine EL-Fassi ◽  
Abdellatif Chahbi ◽  
Samir Kabbaj

Abstract All paper is related with the non-zero continuous solutions f : G → ℂ of the functional equation $${\rm{f}}({\rm{x}}\sigma ({\rm{y}})) + {\rm{f}}(\tau ({\rm{y}}){\rm{x}}) = 2{\rm{f}}({\rm{x}}){\rm{f}}({\rm{y}}),\;\;\;\;\;{\rm{x}},{\rm{y}} \in {\rm{G}},$$ where σ; τ are continuous automorphism or continuous anti-automorphism defined on a compact group G and possibly non-abelian, such that σ2 = τ2 = id: The solutions are given in terms of unitary characters of G:


1996 ◽  
Vol 119 (4) ◽  
pp. 657-663 ◽  
Author(s):  
Hamid-Reza Farhadi

AbstractLet G be a locally compact group and L1(G) be the group algebra of G. We show that G is abelian or compact if every continuous automorphism of L1(G)** maps L1(G) onto L1(G) This characterizes all groups with this property and answers a question raised by F. Ghahramani and A. T. Lau in [7]. We also show that if G is a compact group and θ is any (algebra) isomorphism from L1(G)** onto L1(H)**, then H is compact and θ maps L1(G) onto L1(H).


2015 ◽  
Vol 93 (3) ◽  
pp. 467-472 ◽  
Author(s):  
N. SHRAVAN KUMAR ◽  
S. SIVANANTHAN

Let $G$ be a compact group. The aim of this note is to show that the only continuous *-homomorphism from $L^{1}(G)$ to $\ell ^{\infty }\text{-}\bigoplus _{[{\it\pi}]\in {\hat{G}}}{\mathcal{B}}_{2}({\mathcal{H}}_{{\it\pi}})$ that transforms a convolution product into a pointwise product is, essentially, a Fourier transform. A similar result is also deduced for maps from $L^{2}(G)$ to $\ell ^{2}\text{-}\bigoplus _{[{\it\pi}]\in {\hat{G}}}{\mathcal{B}}_{2}({\mathcal{H}}_{{\it\pi}})$.


Author(s):  
ALIREZA ABDOLLAHI ◽  
MEISAM SOLEIMANI MALEKAN

Abstract The following question is proposed by Martino, Tointon, Valiunas and Ventura in [4, question 1·20]: Let G be a compact group, and suppose that \[\mathcal{N}_k(G) = \{(x_1,\dots,x_{k+1}) \in G^{k+1} \;|\; [x_1,\dots, x_{k+1}] = 1\}\] has positive Haar measure in $G^{k+1}$ . Does G have an open k-step nilpotent subgroup? We give a positive answer for $k = 2$ .


2003 ◽  
Vol 10 (3) ◽  
pp. 503-508 ◽  
Author(s):  
Elhoucien Elqorachi ◽  
Mohamed Akkouchi

Abstract We generalize the well-known Baker's superstability result for the d'Alembert functional equation with values in the field of complex numbers to the case of the integral equation where 𝐺 is a locally compact group, μ is a generalized Gelfand measure and σ is a continuous involution of 𝐺.


1985 ◽  
Vol 98 (2) ◽  
pp. 195-212 ◽  
Author(s):  
Patrick J. McCarthy

AbstractThe quadratic functional equation f(f(x)) *–Tf(x) + Dx = 0 is equivalent to the requirement that the graph be invariant under a certain linear map The induced projective map is used to show that the equation admits a rich supply of continuous solutions only when L is hyperbolic (T2 > 4D), and then only when T and D satisfy certain further conditions. The general continuous solution of the equation is given explicitly in terms of either (a) an expression involving an arbitrary periodic function, function additions, inverses and composites, or(b) suitable limits of such solutions.


2013 ◽  
Vol 56 (1) ◽  
pp. 218-224 ◽  
Author(s):  
Dilian Yang

AbstractBy exploring the relations among functional equations, harmonic analysis and representation theory, we give a unified and very accessible approach to solve three important functional equations- the d'Alembert equation, the Wilson equation, and the d'Alembert long equation-on compact groups.


1974 ◽  
Vol 17 (3) ◽  
pp. 274-284 ◽  
Author(s):  
C. H. Houghton

Freudenthal [5, 7] defined a compactification of a rim-compact space, that is, a space having a base of open sets with compact boundary. The additional points are called ends and Freudenthal showed that a connected locally compact non-compact group having a countable base has one or two ends. Later, Freudenthal [8], Zippin [16], and Iwasawa [11] showed that a connected locally compact group has two ends if and only if it is the direct product of a compact group and the reals.


Sign in / Sign up

Export Citation Format

Share Document