Fourier Analysis and Fourier Transform

2014 ◽  
Vol 26 (03) ◽  
pp. 1430001 ◽  
Author(s):  
Zhirayr G. Avetisyan

The methods of mode decomposition and Fourier analysis of classical and quantum fields on curved spacetimes previously available mainly for the scalar field on Friedman–Robertson–Walker (FRW) spacetimes are extended to arbitrary vector bundle fields on general spatially homogeneous spacetimes. This is done by developing a rigorous unified framework which incorporates mode decomposition, harmonic analysis and Fourier analysis. The limits of applicability and uniqueness of mode decomposition by separation of the time variable in the field equation are found. It is shown how mode decomposition can be naturally extended to weak solutions of the field equation under some analytical assumptions. It is further shown that these assumptions can always be fulfilled if the vector bundle under consideration is analytic. The propagator of the field equation is explicitly mode decomposed. A short survey on the geometry of the models considered in mathematical cosmology is given and it is concluded that practically all of them can be represented by a semidirect homogeneous vector bundle. Abstract harmonic analytical Fourier transform is introduced in semidirect homogeneous spaces and it is explained how it can be related to the spectral Fourier transform. The general form of invariant bi-distributions on semidirect homogeneous spaces is found in the Fourier space which generalizes earlier results for the homogeneous states of the scalar field on FRW spacetimes.


2015 ◽  
Vol 27 (6) ◽  
pp. 477-484 ◽  
Author(s):  
Florin Nemtanu ◽  
Ilona Madalina Costea ◽  
Catalin Dumitrescu

The paper is focused on the Fourier transform application in urban traffic analysis and the use of said transform in traffic decomposition. The traffic function is defined as traffic flow generated by different categories of traffic participants. A Fourier analysis was elaborated in terms of identifying the main traffic function components, called traffic sub-functions. This paper presents the results of the method being applied in a real case situation, that is, an intersection in the city of Bucharest where the effect of a bus line was analysed. The analysis was done using different time scales, while three different traffic functions were defined to demonstrate the theoretical effect of the proposed method of analysis. An extension of the method is proposed to be applied in urban areas, especially in the areas covered by predictive traffic control.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1199
Author(s):  
Juan H. Arredondo ◽  
Manuel Bernal ◽  
María Guadalupe Morales

We generalize the classic Fourier transform operator F p by using the Henstock–Kurzweil integral theory. It is shown that the operator equals the H K -Fourier transform on a dense subspace of L p , 1 < p ≤ 2 . In particular, a theoretical scope of this representation is raised to approximate the Fourier transform of functions on the mentioned subspace numerically. Besides, we show the differentiability of the Fourier transform function F p ( f ) under more general conditions than in Lebesgue’s theory. Additionally, continuity of the Fourier Sine transform operator into the space of Henstock-Kurzweil integrable functions is proved, which is similar in spirit to the already known result for the Fourier Cosine transform operator. Because our results establish a representation of the Fourier transform with more properties than in Lebesgue’s theory, these results might contribute to development of better algorithms of numerical integration, which are very important in applications.


2012 ◽  
Vol 17 (5) ◽  
pp. 630-641 ◽  
Author(s):  
Victor Korzyuk ◽  
Nguyen Van Vinh ◽  
Nguyen Tuan Minh

In this paper, we use some Fourier analysis techniques to find an exact solution to the Cauchy problem for the n-dimensional biwave equation in the upper half-space ℝ n × [0, +∞).


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Matthew Lamb ◽  
Vincent Rouillard

It is sometimes necessary to determine the manner in which materials and structures deteriorate with respect to time when subjected to sustained random dynamic loads. In such cases a system’s fatigue characteristics can be obtained by continuously monitoring its modal parameters. This allows for any structural deterioration, often manifested as a loss in stiffness, to be detected. Many common structural integrity assessment techniques make use of Fourier analysis for modal parameter extraction. For continual modal parameter extraction, the Fourier transform requires that a compromise be made between the accuracy of the estimates and how frequently they can be obtained. The limitations brought forth by this compromise can be significantly reduced by selecting suitable values for the analysis parameters, mainly subrecord length and number of averages. Further improvements may also be possible by making use of spectral enhancement techniques, specifically overlapped averaging and zero padding. This paper uses the statistical analysis of results obtained from numerous physical and numerical experiments to evaluate the influence of the analysis parameters and spectral enhancement techniques on modal estimates obtained from limited data sets. This evaluation will assist analysts in selecting the most suitable inputs for parameter extraction purposes. The results presented in this paper show that when using the Fourier transform to extract modal characteristics, any variation in the parameters used for analysis can have a significant influence on the extraction of natural frequency estimates from systems subjected to random excitation. It was found that for records containing up to 10% noise, subrecord length; hence spectral resolution, has a more pronounced influence on the accuracy of modal estimates than the level of spectral averaging; therefore spectral uncertainty. It was also found that while zero padding may not increase the actual spectral resolution, it does allow for improved natural frequency estimates with the introduction of interpolated estimates at the nondescribed frequencies. Finally, it was found that for modal parameter extraction purposes (in this case natural frequency), increased amounts of overlapped averaging can significantly reduce the variance of the estimates obtained. This is particularly useful as it allows for increased precision without compromising temporal resolution.


Author(s):  
Abdellatif Chahbi ◽  
Brahim Fadli ◽  
Samir Kabbaj

Let \(G\) be a compact group, let \(n \in N\setminus \{0,1\}\) be a fixed element and let \(\sigma\) be a continuous automorphism on \(G\) such that \(\sigma^n=I\). Using the non-abelian Fourier transform, we determine the non-zero continuous solutions \(f:G \to C\) of the functional equation \[ f(xy)+\sum_{k=1}^{n-1}f(\sigma^k(y)x)=nf(x)f(y),\ x,y \in G,\] in terms of unitary characters of \(G\).


ACS Omega ◽  
2018 ◽  
Vol 3 (12) ◽  
pp. 18258-18262
Author(s):  
Miguel Lagos ◽  
Rodrigo Paredes ◽  
César Retamal

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 287 ◽  
Author(s):  
Enrico De Micheli

We prove that, if the coefficients of a Fourier–Legendre expansion satisfy a suitable Hausdorff-type condition, then the series converges to a function which admits a holomorphic extension to a cut-plane. Next, we introduce a Laplace-type transform (the so-called Spherical Laplace Transform) of the jump function across the cut. The main result of this paper is to establish the connection between the Spherical Laplace Transform and the Non-Euclidean Fourier Transform in the sense of Helgason. In this way, we find a connection between the unitary representation of SO ( 3 ) and the principal series of the unitary representation of SU ( 1 , 1 ) .


Sign in / Sign up

Export Citation Format

Share Document