scholarly journals A study on machine translation of resultative constructions

2021 ◽  
Vol 3 (1) ◽  
pp. 87
Author(s):  
Xiaoxia Pan

Based on an empirical investigation on data collected from four popular machine translation systems, this paper explores the current problems machine translation is confronted with in translating Chinese resultative constructions into English. The paper analyzes their syntactic and semantic differences in construction and in verbal pattern. The paper then further elaborates on the problems and reveals a truth that Chinese resultative construction poses a great challenge to machine translation for being very productive and flexible. Its productivity is credited to the fact that the main verbs in Chinese are mostly implied-fulfillment verbs. Its flexibility could be attributed to the hypothesis that there are fewer constraints on the co-occurrence of the main verb and the resultative in Chinese resultative construction. Finally, possible solutions are proposed in an attempt to solve the problems. 

1993 ◽  
Vol 8 (1-2) ◽  
pp. 49-58 ◽  
Author(s):  
Pamela W. Jordan ◽  
Bonnie J. Dorr ◽  
John W. Benoit

2014 ◽  
Vol 1 (20) ◽  
pp. 116
Author(s):  
Mikhail Gennadyevich Grif ◽  
Maria Kirillovna Timofeeva

2019 ◽  
Author(s):  
Soichiro Murakami ◽  
Makoto Morishita ◽  
Tsutomu Hirao ◽  
Masaaki Nagata

2019 ◽  
Vol 5 ◽  
pp. 48-54 ◽  
Author(s):  
A. G. Goodmanian ◽  
◽  
A. V. Sitko ◽  
I. V. Struk ◽  
◽  
...  

2013 ◽  
Vol 48 ◽  
pp. 733-782 ◽  
Author(s):  
T. Xiao ◽  
J. Zhu

This article presents a probabilistic sub-tree alignment model and its application to tree-to-tree machine translation. Unlike previous work, we do not resort to surface heuristics or expensive annotated data, but instead derive an unsupervised model to infer the syntactic correspondence between two languages. More importantly, the developed model is syntactically-motivated and does not rely on word alignments. As a by-product, our model outputs a sub-tree alignment matrix encoding a large number of diverse alignments between syntactic structures, from which machine translation systems can efficiently extract translation rules that are often filtered out due to the errors in 1-best alignment. Experimental results show that the proposed approach outperforms three state-of-the-art baseline approaches in both alignment accuracy and grammar quality. When applied to machine translation, our approach yields a +1.0 BLEU improvement and a -0.9 TER reduction on the NIST machine translation evaluation corpora. With tree binarization and fuzzy decoding, it even outperforms a state-of-the-art hierarchical phrase-based system.


Sign in / Sign up

Export Citation Format

Share Document