scholarly journals Strength Control Factors of Chlorite Schist under Schistose Structure

2020 ◽  
Vol 15 (5) ◽  
pp. 631-637
Author(s):  
Siquan Yan ◽  
Qiankuan Wang ◽  
Hongfei Wang ◽  
Shili Qiu ◽  
Zhiquan Zeng ◽  
...  

In tunnel engineering, it is important to understand the influence of schistose structure on the failure strength of chlorite schist. To explore the strength control factors of chlorite schist, this paper firstly analyzes the mineral composition and meso structure of chlorite schist of different weathering states. The results show that the mineral composition of chlorite schist is changed during the weathering process, and that chlorite is an anisotropic rock mass. Next, a series of uniaxial compressive tests were conducted on chlorite schist samples with different bedding angles (the angle between bedding plane and loading direction; θ=0°, 15°, 30°, 45°, 60°, 75°, and 90°), moisture conditions (dry and saturated), and weathering states (strongly weathered and weakly weathered). Based on the test data, the authors discussed the change laws of the rock strength with bedding angle, weathering state, and moisture condition. The main results are as follows: Chlorite schist is a low-anisotropy rock mass, whose compressive strength exhibited a V-shaped trend with the growing bedding angle; the schistose structure is the internal cause of the deformation and the anisotropic or transversely isotropic strength of the schist; the schistose structure is reshaped and further damaged by external factors (e.g. water softening and weathering effects) in engineering. The research findings help to improve the rock stability and support design in tunnel engineering.

Author(s):  
Neil Bar ◽  
Charalampos Saroglou

The anisotropic rock mass rating classification system, ARMR, has been developed in conjunction with the Modified Hoek-Brown failure to deal with varying shear strength with respect to the orientation and degree of anisotropy within an anisotropic rock mass. Conventionally, ubiquitous-joint or directional shear strength models have assumed a general rock mass strength, typically estimated using the Hoek-Brown failure criterion, and applied a directional weakness in a given orientation depending on the anisotropic nature of the rock mass. Shear strength of the directional weakness is typically estimated using the Barton-Bandis failure criterion, or on occasion, the Mohr-Coulomb failure criteria. Directional shear strength models such as these often formed the basis of continuum models for slopes and underground excavations in anisotropic rock masses. This paper compares ARMR and the Modified Hoek-Brown failure criterion to the conventional directional shear strength models using a case study from Western Australia.


1978 ◽  
Vol 14 (12) ◽  
pp. 1253-1258
Author(s):  
Zh. S. Akopyan ◽  
I. Yu. Babich ◽  
A. N. Guz' ◽  
L. V. Deriglazov

Sign in / Sign up

Export Citation Format

Share Document