scholarly journals SOME FEATURES OF SHOCK PULSES OF IMPACT MACHINES

2020 ◽  
Vol 152 ◽  
pp. 26-42
Author(s):  
D.Z. Yampolsky
Keyword(s):  
2010 ◽  
Vol 17 (6) ◽  
pp. 787-802 ◽  
Author(s):  
Gerard Kelly ◽  
Jeff Punch ◽  
Suresh Goyal ◽  
Michael Sheehy

This theme of this paper is the design and characterisation of a velocity amplifier (VAMP) machine for high-acceleration shock testing of micro-scale devices. The VAMP applies multiple sequential impacts to amplify velocity through a system of three progressively smaller masses constrained to move in the vertical axis. Repeatable, controlled, mechanical shock pulses are created through the metal-on-metal impact between pulse shaping test rods, which form part of the penultimate and ultimate masses. The objectives are to investigate the controllable parameters that affect the shock pulses induced on collision, namely; striker and incident test rod material; test rod length; pulse shaping mechanisms; and impact velocity. The optimum VAMP configuration was established as a 60 mm long titanium striker test rod and a 120 mm long titanium incident rod. This configuration exhibited an acceleration magnitude and a primary pulse duration range of 5,800–23,400 g and 28.0–44.0μs respectively. It was illustrated that the acceleration spectral content can be manipulated through control of the test rod material and length. This is critical in the context of practical applications, where it is postulated that the acceleration signal can be controlled to effectively excite specific components in a multi-component assembly affixed to the VAMP incident test rod.


2021 ◽  
Vol 303 ◽  
pp. 01044
Author(s):  
Alexander Zakharov ◽  
Natalya Erofeeva

The dynamics of interaction of the large lumps of the bulk cargo with a conveyor belt while passing through roller supports of the conveyor linear sections is often a cause of damage on the conveyor belt. In order to reduce the negative impact it is proposed to isolate the conveyor belt surface from the large lumps by filling small fractions of the bulk cargo by means of adding a shock device to the conveyor structure that causes increased segregation of the bulk cargo. A mathematical model of the segregation of the bulk cargo located on the conveyor belt and in zone of impact of the shock pulses has been developed. The model considers a change in the rotation direction of the large lump when applying shock pulses to the characteristic points of the lump lower face. Herewith it takes into consideration weakening of the shock pulse by a layer of the bulk cargo small fractions. The presented model has received experimental confirmation. Analytically and experimentally the height of filling of the bulk cargo small fractions under a large lump when passing the vibrating impact device located on the conveyor belt has been determined.


2005 ◽  
Vol 6 (4) ◽  
pp. 280-286 ◽  
Author(s):  
Yuri A. Pishchalnikov ◽  
Oleg A. Sapozhnikov ◽  
Michael R. Bailey ◽  
Irina V. Pishchalnikova ◽  
James C. Williams ◽  
...  

1969 ◽  
Vol 46 (3B) ◽  
pp. 789-794 ◽  
Author(s):  
R. A. Wentzell ◽  
H. D. Scott ◽  
R. P. Chapman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document