rotation direction
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 72)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Zeyu Li ◽  
Xi Chen ◽  
Christopher M Muscatello ◽  
Keith H Burrell ◽  
Xueqiao Xu ◽  
...  

Abstract Wide pedestal Quiescent High confinement (QH) mode discovered on DIII-D in recent years is a stationary and quiescent H-mode with the pedestal width exceeding EPED prediction by at least 25%. Its characteristics, such as low rotation, high energy confinement and ELM-free operation, make it an attractive operation mode for future reactors. Linear and nonlinear simulations using BOUT++ reduced two fluid MHD model are carried out to investigate the bursty broadband turbulence often observed in the edge of wide-pedestal QH-mode plasmas. Two kinds of MHD-scale instabilities in different spatial locations within the pedestal were found in the simulations: one mild peeling-ballooning (PB) mode (γ_PB<0.04ω_A) located near the minimum in Er well propagating in ion diamagnetic drift direction; and one drift-Alfvén wave (DAW) locates at smaller radius compared to Er well propagating in the electron diamagnetic drift direction and unstable only when the parallel electron dynamics is included in the simulation. The coupling between drift wave and shear Alfvén wave provides a possible cause of the experimentally observed local profile flattening in the upper-pedestal. The rotation direction, mode location, as well as the wavenumber of these two modes from BOUT++ simulations agree reasonably well with the experimental measurements, while the lack of quantitatively agreement is likely due to the lack of trapped electron physics in current fluid model. This work presents improved physics understanding of the pedestal stability and turbulence dynamics for wide-pedestal QH-mode.


2022 ◽  
Vol 16 (1) ◽  
pp. 78-86
Author(s):  
Keisuke Hara ◽  
Toshihiro Fukuda ◽  
Kyosuke Taguchi ◽  
Hiromi Isobe ◽  
◽  
...  

Tribological properties such as lubrication, friction, and wear resistance greatly affect machine operation efficiency, performance, and service life. Surface texturing methods such as scraping can be used to improve these properties. Scraping creates many small depressions on the target surface. These depressions, which are evenly distributed, function as oil holes and thus improve lubrication performance. This paper describes a surface texturing technique based on ultrasonic vibration-assisted turning (UVAT) that simultaneously improves tribological properties and machinability. In UVAT, the cutting tool is oscillated mainly in the principal direction. Vibration in the radial direction, which is induced by Poisson deformation, periodically digs up or pushes the workpiece surface in the radial direction, creating a textured surface. A surface subjected to UVAT has periodic depressions along the workpiece rotation direction. The texturing rate of UVAT is up to 6700 mm2/min, which is higher than that of manual scraping. To evaluate the tribological performance of a surface textured by UVAT, the friction coefficient between a stainless steel pin and the surface was measured under oil dipping conditions. The results of friction experiments show that the friction coefficient of the UVAT-treated surface and its fluctuation were lower than those of a conventional turned surface. The UVAT-treated surface had stable friction properties.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Hu Zhang ◽  
Jianbo Zang ◽  
Desheng Zhang ◽  
Weidong Shi ◽  
Jiean Shen

Studies on the tip leakage vortex (TLV) are extensive, while studies on the secondary tip leakage vortex (S-TLV) are rare. To advance the understanding of the formation mechanism of the S-TLV, turbulent cavitating flows were numerically investigated using the shear stress transport (SST) turbulence model and the Zwart–Gerber–Belamri cavitation model. The morphology and physical quantity distribution of the S-TLV under two cavitation conditions were compared, and its formation mechanism was analyzed. The results reveal that in the lower cavitation number case, there is a low-velocity zone of circumferential flow near the tip in the back half of the blade. The shear vortices formed by the leakage jet gradually accumulate and concentrate in the low-velocity area, which is one of the main sources of the S-TLV. Meanwhile, the radial jet pushes the vortices on the suction surface to the tip, which mixes with the S-TLV. The flow path formed by the radial jet and the leakage jet is in accordance with the rotation direction of the S-TLV, which promotes the S-TLV’s further development. Under the conditions of a small cavitation number and low flow rate, the circumferential velocity and radial velocity of the fluid near the gap have altered significantly, which is conducive to the formation of the S-TLV.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Kazuyoshi Baba ◽  
Daisuke Chiba ◽  
Yu Mori ◽  
Yoshiyuki Kuwahara ◽  
Atsushi Kogure ◽  
...  

Abstract Background This study examined the biomechanics of preventing excessive internal hip joint rotation related to the hip flexion angle. Method An intramedullary nail with a circular plate equipped with a protractor was installed in the femur of nine normal hips. The circular plate was pulled by 3.15 Nm of force in the internal rotation direction. The external rotators were individually resected, finally cutting the ischiofemoral ligament. The cutting order of the external rotators differed on each side to individually determine the internal rotation resistance. The external rotators were resected from the piriformis to the obturator externus in the right hips and the reverse order in the left hips. Traction was performed after excising each muscle and ischiofemoral ligament. Measurements were taken at 0°, 30°, and 60° of hip flexion, and the differences from baseline were calculated. Results For the right hip measurements, the piriformis and ischiofemoral ligament resection significantly differed at 0° of flexion (p = 0.02), each external rotator and the ischiofemoral ligament resections significantly differed at 30° of flexion (p < 0.01), and the ischiofemoral ligament and piriformis and inferior gemellus resections significantly differed at 60° of flexion (p = 0.04 and p = 0.02, respectively). In the left hips, the ischiofemoral ligament and obturator externus, inferior gemellus, and obturator internus resections significantly differed at 0° of flexion (p < 0.01, p < 0.01, and p = 0.01, respectively), as did each external rotator and the ischiofemoral ligament resections at 30° of flexion (p < 0.01). Conclusion The ischiofemoral ligament primarily restricted the internal rotation of the hip joint. The piriformis and obturator internus may restrict internal rotation at 0° and 60° of flexion.


2021 ◽  
Vol 12 (1) ◽  
pp. 396
Author(s):  
Xiang Shen ◽  
Dajun Yuan ◽  
Dalong Jin ◽  
Chengyong Cao

The existing cutterhead torque calculation method usually simplifies the characteristics of the shield, which ignores the rolling angle. In this paper, the cross-river shield project of Wuhan Metro Line 8 is taken as the research focus. Firstly, the measured data of the cutterhead torque (CT), the rolling angle and rotation direction were analyzed. Then on this basis, the penetrability, tunneling thrust, and rolling angle were taken as the influential factors to analyze CT sensitivity. Finally, based on the theoretical calculation model, a modified solution of CT was obtained considering the rolling angle. The results show that the rolling angle can be reduced to zero by changing the direction of the cutterhead rotation; the rolling angle has a greater impact on CT than the other two factors as shown through the analysis of the range difference and Statistical Product and Service Solutions (SPSS) method. As the absolute value of the rolling angle increases, CT also increases, and the relationship between them is linear. To a certain extent, the rolling angle of the shield can reflect the difficulty of tunneling and the running status. By monitoring the rolling angle of the shield, the prediction of CT can be more in line with the actual construction conditions.


Author(s):  
James Robert Hunt ◽  
Martin Andrew Ebert ◽  
Pejman Rowshanfarzad ◽  
Hans Lynggaard Riis

Abstract Objective: The objective of this study was to separately quantify the stability of the megavoltage imager (MVI) and radiation head of an Elekta Unity MRL, throughout full gantry rotation. Approach: A ball-bearing (BB) phantom was attached to the radiation head of the Unity, while a single BB was placed at isocentre. Images were acquired during rotation, using the MVI. These images were processed using an in-house developed MATLAB program to reduce the errors resulted by noise, and the positions of the BBs in the images were analysed to extract MVI and radiation head sag data. Main results: The results returned by this method showed reproducibility, with a mean standard deviation of 7 µm for the position of BBs across all gantry angles. The radiation head was found to sag throughout rotation, with a maximum course of movement of 0.59 mm. The sag pattern was stable over a period greater than a year but showed some dependence on gantry rotation direction. Significance: As MRL is a relatively new system, it is promising to have data supporting the high level of precision on one Elekta Unity machine. Isolating and quantifying the sources of uncertainty in radiation delivery may allow more sophisticated analysis of how the system performance may be improved.


Author(s):  
Yu Mao ◽  
Y. Liu ◽  
Hai Lin

Abstract Mechanic antennas provide opportunities for human portable, VLF communications, where a rotational dipole emits EM signals with angular momenta. In this paper we analytically derive the electromagnetic fields from a rotational electric dipole using Fourier transform method, and find that the radiated fields from the rotational electric dipole carries nonzero energy flow density in both orbital and spin angular momentum (AM) parts by AM flux tensors. Intuitively, a rotation of a dipole induces a longitudinal orbital angular momentum and a longitudinal spin angular momentum both circulating in the rotation direction. And the binding force for the rotational electric dipole is then shown to result mainly from the Coulomb fields. We believe that our work can provide novel communication designs for portable mechanic antennas.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jingxu Chen ◽  
Yiran Wang ◽  
Xinlian Yu ◽  
Zhiyuan Liu

This paper provides an integrated planning methodology for the optimization of port rotation direction and fleet deployment for container liner shipping routes with consideration of demand uncertainty. We first consider a special case that demand is deterministic. A multicommodity flow network model is developed via minimizing the total network-wide cost. Its decisions are the selection of port rotation direction and fleet deployment and container routings in the shipping network. Afterward, we address the generic case that uncertain demand is considered, which is represented by potentially realizable demand scenarios. We develop a minimax regret model to procure the least maximum regret across all the demand scenarios. The proposed models are applied to an Asia-Europe-Oceania liner shipping network with 46 ports and 12 ship routes. Results could provide the liner company with a comprehensive decision tool to simultaneously determine port rotation direction and fleet deployment when tackling uncertain demand.


2021 ◽  
Author(s):  
Tian Xia ◽  
Shubo Cheng ◽  
Wenke Xie ◽  
Shaohua Tao

Abstract A modified multiplexed vortex helico-conical petal-like zone plate (MMVHPZP) is proposed to generate a polygon-like beam or light-arm beam with an adjustable opening. The MMVHPZP consists of the modified helico-conical petal-like zone plate (MHPZP) with the topological charge l and exponent n, and the multiplexed vortex spiral phase plate (MVSPP) with the inner topological charge l1 and outer topological charge l2. Moreover, when l1 is equal or unequal to l2, the MMVHPZP has the adjustable polygon-like beam or light-arm beam, respectively. In addition, when n is small or large, the number of arms is equal to the absolute difference between l1 and l2 or the sum of one and the absolute difference between l1 and l2, respectively. Furthermore, for the different l1 or l2, the opening is constant. With the increase of the n or l, the opening is larger. When l1 is greater or less than l2, the rotation direction of arms is the anticlockwise or clockwise direction, respectively.


Sign in / Sign up

Export Citation Format

Share Document