scholarly journals Some special vector fields on a cosymplectic manifold admitting a Ricci soliton

2021 ◽  
Vol 22 (2) ◽  
pp. 1039
Author(s):  
Halil İbrahim Yoldaş ◽  
Şemsi Eken Meriç ◽  
Erol Yaşar
2021 ◽  
Vol 18 (2) ◽  
Author(s):  
Mohamed Tahar Kadaoui Abbassi ◽  
Noura Amri ◽  
Cornelia-Livia Bejan

Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 59
Author(s):  
Erol Kılıç ◽  
Mehmet Gülbahar ◽  
Ecem Kavuk

Concurrent vector fields lying on lightlike hypersurfaces of a Lorentzian manifold are investigated. Obtained results dealing with concurrent vector fields are discussed for totally umbilical lightlike hypersurfaces and totally geodesic lightlike hypersurfaces. Furthermore, Ricci soliton lightlike hypersurfaces admitting concurrent vector fields are studied and some characterizations for this frame of hypersurfaces are obtained.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Mircea Crasmareanu ◽  
Camelia Frigioiu

Fix ξ a unitary vector field on a Riemannian manifold M and γ a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that γ is a Legendre curve for ξ if and only if the γ-Fermi–Walker covariant derivative of ξ vanishes. The cases when γ is circle or helix as well as ξ is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para)contact, particularly (para)Sasakian, manifolds and hypersurfaces in complex space forms.


Author(s):  
Giovanni Calvaruso

We determine and describe all the Ricci solitons within a very large class of Siklos metrics. As an application, the Ricci soliton equation is completely solved for several classes of Siklos metrics admitting additional Killing vector fields (in particular, for several homogeneous ones).


2014 ◽  
Vol 25 (11) ◽  
pp. 1450104 ◽  
Author(s):  
Bang-Yen Chen ◽  
Sharief Deshmukh

A Ricci soliton (M, g, v, λ) on a Riemannian manifold (M, g) is said to have concurrent potential field if its potential field v is a concurrent vector field. Ricci solitons arisen from concurrent vector fields on Riemannian manifolds were studied recently in [Ricci solitons and concurrent vector fields, preprint (2014), arXiv:1407.2790]. The most important concurrent vector field is the position vector field on Euclidean submanifolds. In this paper we completely classify Ricci solitons on Euclidean hypersurfaces arisen from the position vector field of the hypersurfaces.


2010 ◽  
Vol 07 (06) ◽  
pp. 951-960 ◽  
Author(s):  
JONG TAEK CHO ◽  
RAMESH SHARMA

We show that a compact contact Ricci soliton with a potential vector field V collinear with the Reeb vector field, is Einstein. We also show that a homogeneous H-contact gradient Ricci soliton is locally isometric to En+1 × Sn(4). Finally we obtain conditions so that the horizontal and tangential lifts of a vector field on the base manifold may be potential vector fields of a Ricci soliton on the unit tangent bundle.


Author(s):  
T.A. Andreeva ◽  
V.V. Balashchenko ◽  
D.N. Oskorbin ◽  
E.D. Rodionov

The papers of many mathematicians are devoted to the study of conformally Killing vector fields. Being a natural generalization of the concept of Killing vector fields, these fields generate a Lie algebra corresponding to the Lie group of conformal transformations of the manifold. Moreover, they generate the class of locally conformally homogeneous (pseudo) Riemannian manifolds studied by V.V. Slavsky and E.D. Rodionov. Ricci solitons, which R. Hamilton first considered, are another important area of research. Ricci solitons are a generalization of Einstein's metrics on (pseudo) Riemannian manifolds. The Ricci soliton equation has been studied on various classes of manifolds by many mathematicians. In particular, a general solution of the Ricci soliton equation was found on 2-symmetric Lorentzian manifolds of low dimension, and the solvability of this equation in the class of 3-symmetric Lorentzian manifolds was proved. The Killing vector fields make it possible to find the general solution of the Ricci soliton equation in the case of the constancy of the Einstein constant in the Ricci soliton equation. However, the role of the Killing fields is played by conformally Killing vector fields for different values of the Einstein constant. In this paper, we investigate conformal Killing vector fields on 5-dimensional 2-symmetric Lorentzian manifolds. The general solution of the conformal analog of the Killing equation on five-dimensional locally indecomposable 2-symmetric Lorentzian manifolds is described in local coordinates, discovered by A.S. Galaev and D.V. Alekseevsky.


Author(s):  
Wenjie Wang

AbstractIn this paper, we study $$\eta$$ η -Ricci solitons on almost cosymplectic $$(k,\mu )$$ ( k , μ ) -manifolds. As an application, it is proved that if an almost cosymplectic $$(k,\mu )$$ ( k , μ ) -metric with $$k<0$$ k < 0 represents a Ricci soliton, then the potential vector field of the Ricci soliton is a strict infinitesimal contact transformation, and the corresponding almost cosymplectic manifold is locally isometric to a Lie group whose local structure is determined completely by $$k<0$$ k < 0 . In addition, a concrete example is constructed to illustrate the above result.


2021 ◽  
Vol 60 ◽  
pp. 83-94
Author(s):  
Halil Yoldas ◽  

The purpose of present paper is to study cosymplectic manifolds admitting certain special vector fields such as holomorphically planar conformal (in short HPC) vector field. First, we prove that an HPC vector field on a cosymplectic manifold is also a Jacobi-type vector field. Then, we obtain the necessary conditions for such a vector field to be Killing. Finally, we give an important characterization for a torse-forming vector field on such a manifold given as to be recurrent.


2019 ◽  
Vol 28 (16) ◽  
pp. 2040010
Author(s):  
Ibrar Hussain ◽  
Tahirullah ◽  
Suhail Khan

Our focus is to investigate the Ricci solitons of the plane symmetric and static four-dimensional Lorentzian metrics. It is found that these metrics admit shrinking and concircular potential Ricci soliton vector fields with either 6- or 10-dimensional Lie algebra. Further, it is observed that the 4-dimensional Lorentzian static Ricci soliton manifolds are Einsteinian and hence the Ricci solitons are the trivial Ricci solitons.


Sign in / Sign up

Export Citation Format

Share Document