scholarly journals Evaluation of the Quantitative Effects of Variables on a Paracetamol Tablet formulation Prepared with Gum as Binding Agent

2010 ◽  
Vol 8 (4) ◽  
pp. 176
Author(s):  
G. E. Adetogun ◽  
G. Alebiowu
2020 ◽  
Vol 16 (9) ◽  
pp. 1404-1410
Author(s):  
Rishabha Malviya

Background: In the previous study, investigators have synthesized acrylamide grafted and carboxymethylated derivatives of neem gum and evaluated their potential in the formulation of nanoparticles. In continuation of previous work, authors have evaluated neem gum polysaccharide (NGP), acrylamide grafted neem gum polysaccharide (NGP-g-Am) and carboxymethylated neem gum polysaccharide (CMNGP) as binding agent in the tablet dosage form. Methods: Diclofenac sodium was used as a model drug while microcrystalline cellulose and talc were used as excipient in the preparation of granules employing wet granulation technique. NGP, NGP-g-Am and CMNGP were utilized as binding agent in the preparation of granules. Prepared granules were characterized for various pre-compression and post-compression parameters. Results and Discussion: Binding agents were used in the concentration of 4-24%w/w. NGP incorporated granules showed more bulk density and lower values of tapped density, Carr’s index, bulkiness, Hausner’s ratio and angle of repose as compared to NGP-g-Am consisting granules. NGP-g-Am consisting tablets showed more hardness and zero friability as compared to NGP based tablets. Drug content was found lower for the tablets having grafted polymer in place of NGP. CMNGP were also utilized to prepare granules but granules were not be able to compress keeping all the compacting parameters same as used in the case of NGP and NGP-g-Am consisting granules. NGP and NGP-g-Am were able to sustain drug release up to 6 and 8 h, respectively. Conclusion: It can be concluded that NGP-g-Am induces better properties when used as a binder in the tablet formulation than native polymer, while CMNGP cannot be utilized as a binding agent in the preparation of a tablet.


2016 ◽  
Vol 46 (6) ◽  
pp. 565-573 ◽  
Author(s):  
Tolulope O. Ajala ◽  
Olufunke D. Akin-Ajani ◽  
Chinemerem Ihuoma-Chidi ◽  
Oluwatoyin A. Odeku

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Frederick W. A. Owusu ◽  
Mariam E. Boakye-Gyasi ◽  
Philomena Entsie ◽  
Marcel T. Bayor ◽  
Kwabena Ofori-Kwakye

Polymeric materials from plants continue to be of interest to pharmaceutical scientists as potential binders in immediate release tablets due to availability, sustainability, and constant supply to feed local pharmaceutical industries. Paracetamol tablet formulations were utilized in investigating the potential binding characteristics of pectin harnessed from various okra genotypes (PC1-PC5) in Ghana. The pectin yields from the different genotypes ranged from 6.12 to 18.84%w/w. The pH of extracted pectin ranged from 6.39 to 6.92, and it had good swelling indices and a low moisture content. Pectin extracted from all genotypes were evaluated as binders (10, 15, and 20%w/v) and compared to tragacanth BP. All formulated tablets (F1-F18) passed the weight uniformity, drug content, hardness, and friability tests. Based on their crushing strength, tablets prepared with pectin from the various genotypes were relatively harder ( P ≤ 0.05 ) than tablets prepared with tragacanth BP. Tablets prepared with pectins as binders at 10%w/v and 15%w/v passed the disintegration and dissolution tests with the exception of PC4 at 15%w/v. Incorporation of pectin from all genotypes (excluding PC5) as a binder at concentrations above 15%w/v (F13, F16, F14, and F15) produced tablets which failed the disintegration test and showed poor dissolution profiles. Thus, pectin from these genotypes can be industrially commodified as binders in immediate release tablets using varying concentrations.


2018 ◽  
Vol 2 (3) ◽  
pp. 136-139
Author(s):  
Modupe Ologunagba ◽  
◽  
Chukwuemeka Azubuike ◽  
Oluwamayowa Sadiku ◽  
Boladale Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document