pharmaceutical industries
Recently Published Documents


TOTAL DOCUMENTS

1726
(FIVE YEARS 1252)

H-INDEX

39
(FIVE YEARS 19)

2023 ◽  
Vol 83 ◽  
Author(s):  
M. Hussain ◽  
I. Liaqat ◽  
N. M. Ali ◽  
N. Arshad ◽  
U. Hanif ◽  
...  

Abstract Pheretima posthuma (Vaillant, 1868), a native earthworm of Pakistan and Southeast Asia, has wide utilization in vermicomposting and bioremediation process. In this study, P. posthuma coelomic fluid (PCF) and body paste (PBP) was evaluated as antibacterial agent against ampicillin (AMP) resistant five Gram positive and four Gram negative clinical isolates. The antibacterial effect of different doses (i.e. 25-100 µg/ml) of PCF and PBP along with AMP and azithromycin (AZM) (negative and positive controls, respectively) were observed through disc diffusion and micro-dilution methods. All nine clinical isolates were noticed as AMP resistant and AZM sensitive. Antibacterial effects of PCF and PBP were dose dependent and zone of inhibitions (ZI) against all clinical isolates were between 23.4 ± 0.92 to 0 ± 00 mm. The sensitivity profile of PCF and PBP against clinical isolates was noticed as 44.44 and 55.56%, respectively. Both PCF and PBP showed bacteriostatic (BTS) action against S. aureus, S. pyogenes, K. pneumonia, N. gonorrhoeae. Moreover, the cumulative BTS potential of PCF and PBP against all isolates was 66.67 and 55.56%, respectively. The MICs of PCF and PBP were ranged from 50-200 µg/ml against selected isolates. The bacterial growth curves indicated that PCF and PBP inhibited the growth of all isolates at their specific MIC concentrations. However, PBP has better antibacterial potential compared to PCF against selected isolates. Therefore, it is concluded that both PCF and PBP of P. posthuma possess antibacterial and BTS potential against ampicillin resistant clinical isolates. This organism might be considered as a second choice of antibacterial agents and can further be utilized in pharmaceutical industries for novel drug manufacturing by prospecting bioactive potential agents.


2023 ◽  
Vol 83 ◽  
Author(s):  
S. A. Bano ◽  
S. Naz ◽  
B. Uzair ◽  
M. Hussain ◽  
M. M. Khan ◽  
...  

Abstract Many soil microorganisms’ i.e., bacteria and fungi produce secondary metabolites called antibiotics. These are used for the treatment of some of the bacterial, fungal and protozoal diseases of humans. There is a need for isolation of a broad spectrum of antibiotics from microorganisms due to the emergence of antibiotic resistance. In the present study two antibiotic producing bacteria Klebsiella pneumoniae and Bacillus cereus were isolated from pharmaceutical and poultry feed industry of Hattar, Haripur Pakistan. Total 10 waste samples were collected from different industries (Marble, Ghee, Soap, Mineral, Steel, Poultry Feed, Pharmaceutical, Qarshi, Cosmetic and Glass). Thirty-three bacterial strains were isolated from industrial wastes of these ten different industries. Fourteen out of thirty-three bacterial strains exhibited antimicrobial activities against at least one of the test microbes considered in this study including Escherchia coli, Staphylococcus aureus and Salmonella typhi. The bacteria were isolated by standard serial dilution spread plate technique. Morphological characterization of the isolates was done by Gram staining. Nine bacterial isolates out of fourteen were initially identified as B. cereus and five as K. pneumoniae through biochemical characterization. The antibacterial activities were tested by well diffusion method. Maximum number of antibiotic producing bacteria were isolated from pharmaceutical and poultry feed industry based on the results of primary screening, the most potential isolates S9, S19, S20, S22 and S23 were selected for secondary screening. The maximum activity against E. coli and S. aureus was recorded by bacterial isolate S19 i.e zones of inhibition of 6.5mm and 9mm while S20 showed 7.5mm and 6mm zones respectively. Molecular identification was carried out on the basis of 16S rRNA sequence analysis. Finally, the isolates were identified as B. cereus accession number LC538271and K. pneumoniae accession number MT078679. Analysis of bacterial extract S20 through GC-MS indicated the presence of 8 compounds of diverse nature and structure. Present study suggests that wastes of pharmaceutical and poultry feed industry may have antibiotic producing bacteria. These bacteria could be utilized for the production of antibiotics. B. cereus and K. pneumoniae isolated from wastes of poultry feed and pharmaceutical industries have the potential to produce antibiotics and could be used to control the microbial growth.


Author(s):  
Ravi Nagaich

Abstract: This paper describes an exploratory study of lean techniques and an extant of its implementation in a pharmaceutical industries. The main purpose of this paper is, at how much extant adoption of lean techniques and elimination of wastage and non-value added activities in a pharmaceutical industries. A questionnaire survey is prepared to know the extent of lean techniques implementation. Questionnaire survey send to the respondents of various department (production and planning, human resources, quality and control, transportation, inventory control etc.) of an organization and asked to rate the each of these areas. This study also inspect the drivers and barriers that affect the adoption of lean techniques. The mean value for each area is obtain after calculations on SPSS and statistical analyses were performed for each area. Further, this study also examined different subjects related with lean techniques adoption for example its comprehension among the respondent organization, its advantages and impediments, the techniques and tools used, etc. The outcomes from this study also revealed the hindrance that forestall or postpone the lean execution. The main obstacles in adoption of lean technology are the absence of understanding lean ideas and shop floor representative’s attitude. Keywords: lean manufacturing, lean barriers, SPSS, mean score, driving forces


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marcelo Seeling ◽  
Tobias Kreuter ◽  
Luiz Felipe Scavarda ◽  
Antonio Márcio Tavares Thomé ◽  
Bernd Hellingrath

PurposeThis paper aims to offer evidence-based findings on the under-researched role of finance in the sales and operations planning (S&OP) process, aiming to guide academics and practitioners towards successful S&OP implementations.Design/methodology/approachThe research builds upon a multiple case study, embracing five Latin American subsidiaries of four global manufacturing corporations from the consumer goods, chemical and pharmaceutical industries. Following an exploratory approach, the case study results are analysed in within- and cross-case analyses.FindingsThe research findings are synthesised into a framework, demonstrating relevant benefits from the engagement of finance along the S&OP process and the implications of its interactions with traditional S&OP functions as sales, marketing and operations. The paper shows how finance adds value in supporting the process, enabling decisions on costs, margins, capital expenditures and return on investments. Finance strengthens S&OP when assessing demand- and supply-related risks and facilitates comparing the functional business areas' plans to budget. While finance participation is highlighted as necessary for supporting successful S&OP implementations, it also receives valuable inputs in return, characterising a two-way communication role that benefits the entire organisation.Originality/valueThis is the first research paper focusing on empirically exploring the role of finance within S&OP, going beyond initial insights from practice and academia. It provides practitioners and scholars with an in-depth, evidence-based view of finance's integration along the S&OP process.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Elena Villacrés ◽  
María Quelal ◽  
Susana Galarza ◽  
Diana Iza ◽  
Edmundo Silva

Quinoa is an important crop for food security and food sovereignty in Ecuador. In this study, we evaluated the nutritional value, bioactive compounds, and antinutrient compounds of leaves and grains of the Ecuadorian quinoa variety Tunkahuan, and we identified significant differences between the nutrient content in the leaves and grains. The quinoa leaves presented a higher protein content than the grains, as well as inorganic nutrients such as calcium, phosphorus, iron, and zinc. Both the grains and leaves had an appreciable phenolic content. In addition, the quinoa grains presented a higher content of the antinutrient saponin than the leaves, while the leaves contained more nitrates and oxalates than the grains. Thus, quinoa leaves and grains exhibit excellent potential for application in the food and pharmaceutical industries.


2022 ◽  
Author(s):  
Yuling Zhu ◽  
Jifeng Yuan

Enantiopure amino acids are of particular interest in the agrochemical and pharmaceutical industries. Here, we reported a multi-enzyme cascade for efficient production of L-phenylglycine (L-Phg) from biobased L-phenylalanine (L-Phe). We first attempted to engineer Escherichia coli for expressing L-amino acid deaminase (LAAD) from Proteus mirabilis, hydroxymandelate synthase (HmaS) from Amycolatopsis orientalis, (S)-mandelate dehydrogenase (SMDH) from Pseudomonas putida, the endogenous aminotransferase (AT) encoded by ilvE and L-glutamate dehydrogenase (GluDH) from E. coli. However, 10 mM L-Phe only afforded the synthesis of 7.21 mM L-Phg. The accumulation of benzoylformic acid suggested that the transamination step might be rate-limiting. We next used leucine dehydrogenase (LeuDH) from Bacillus cereus to bypass the use of L-glutamate as amine donor, and 40 mM L-Phe gave 39.97 mM (6.04 g/L) L-Phg, reaching 99.9% conversion. In summary, this work demonstrated a concise four-step enzymatic cascade for the L-Phg synthesis from biobased L-Phe, with a potential for future industrial applications.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 502
Author(s):  
Sergio Davinelli ◽  
Luciano Saso ◽  
Floriana D’Angeli ◽  
Vittorio Calabrese ◽  
Mariano Intrieri ◽  
...  

Astaxanthin (AST) is a dietary xanthophyll predominantly found in marine organisms and seafood. Due to its unique molecular features, AST has an excellent antioxidant activity with a wide range of applications in the nutraceutical and pharmaceutical industries. In the past decade, mounting evidence has suggested a protective role for AST against a wide range of diseases where oxidative stress and inflammation participate in a self-perpetuating cycle. Here, we review the underlying molecular mechanisms by which AST regulates two relevant redox-sensitive transcription factors, such as nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NF-κB). Nrf2 is a cellular sensor of electrophilic stress that coordinates the expression of a battery of defensive genes encoding antioxidant proteins and detoxifying enzymes. Likewise, NF-κB acts as a mediator of cellular stress and induces the expression of various pro-inflammatory genes, including those encoding cytokines, chemokines, and adhesion molecules. The effects of AST on the crosstalk between these transcription factors have also been discussed. Besides this, we summarize the current clinical studies elucidating how AST may alleviate the etiopathogenesis of oxidative stress and inflammation.


2022 ◽  
Vol 23 (2) ◽  
pp. 805
Author(s):  
Jakub Matusiak ◽  
Urszula Maciołek ◽  
Małgorzata Kosińska-Pezda ◽  
Dariusz Sternik ◽  
Jolanta Orzeł ◽  
...  

The main purpose of the research was to obtain and study hybrid materials based on three different nano-oxides commonly used in the cosmetic and pharmaceutical industries: Al2O3, TiO2, and ZnO, with the natural bioactive polysaccharide fucoidan. Since the mentioned oxides are largely utilized by industry, there is no doubt that the presented studies are important from an environmental point of view. On the basis of the textural studies (dynamic light scattering DLS, low temperature nitrogen adsorption, X-ray diffraction analysis XRD, scanning electron microscopy SEM) it was proved that the properties of the hybrid materials differ from the pure components of the system. Moreover, the advanced thermal analysis (TG-DTG-DSC) combined with the evolved gas analysis using Fourier transformed infrared spectroscopy (FTIR) and mass spectrometry were applied to describe the thermal decomposition of fucoidan, oxides and hybrid materials. It was found that the interactions between the polymer and the oxides results in the formation of the hybrid materials due to the functionalization of the nanoparticles surface, and that their thermal stability increased when compared to the pure substrates. Such findings definitely fill the literature void regarding the fucoidan based hybrid materials and help the industrial formulators in the preparation of new products.


2022 ◽  
Vol 15 ◽  
Author(s):  
Manaf AlMatar ◽  
Essam A. Makky ◽  
Aizi Nor Mazila Ramli ◽  
Nesibe Ebru Kafkas ◽  
Fatih Köksal

Abstract: COVID-19, which is speedily distributed across the world and presents a significant challenge to public health, is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Following MERS coronavirus (MERS-CoV) and SARS, this is the third severe coronavirus outbreak in less than 20 years. To date, there are no exact agents and vaccines available for the treatment of COVID-19 that are clinically successful. Antimicrobial medications are effective in controlling infectious diseases. However, the extensive use of antibiotics makes microbes more resistant to drugs and demands novel bioactive agents’ development. Polysaccharides are currently commonly used in the biomedical and pharmaceutical industries for their remarkable applications. Polysaccharides appear to have a wide range of anti-virus (anti-coronavirus) and antimicrobial applications. Polysaccharides are able to induce bacterial cell membrane disruption as they demonstrate potency in binding onto the surfaces of microbial cells. Here, the antiviral mechanisms of such polysaccharides and their success in the application of antiviral infections are reviewed. Additionally, this report provides a summary of current advancements of well-recognized polysaccharides as antimicrobial and anti-biofilm agents.


2022 ◽  
Vol 23 (2) ◽  
pp. 773
Author(s):  
Kaikai Wang ◽  
Xiaolu Wang ◽  
Huiying Luo ◽  
Yaru Wang ◽  
Yuan Wang ◽  
...  

N-acetylglucosamine (GlcNAc) is an amino sugar that has been widely used in the nutraceutical and pharmaceutical industries. Recently, microbial production of GlcNAc has been developed. One major challenge for efficient biosynthesis of GlcNAc is to achieve appropriate carbon flux distribution between growth and production. Here, a synergistic substrate co-utilization strategy was used to address this challenge. Specifically, glycerol was utilized to support cell growth and generate glutamine and acetyl-CoA, which are amino and acetyl donors, respectively, for GlcNAc biosynthesis, while glucose was retained for GlcNAc production. Thanks to deletion of the 6-phosphofructokinase (PfkA and PfkB) and glucose-6-phosphate dehydrogenase (ZWF) genes, the main glucose catabolism pathways of Escherichia coli were blocked. The resultant mutant showed a severe defect in glucose consumption. Then, the GlcNAc production module containing glucosamine-6-phosphate synthase (GlmS*), glucosamine-6-phosphate N-acetyltransferase (GNA1*) and GlcNAc-6-phosphate phosphatase (YqaB) expression cassettes was introduced into the mutant, to drive the carbon flux from glucose to GlcNAc. Furthermore, co-utilization of glucose and glycerol was achieved by overexpression of glycerol kinase (GlpK) gene. Using the optimized fermentation medium, the final strain produced GlcNAc with a high stoichiometric yield of 0.64 mol/mol glucose. This study offers a promising strategy to address the challenge of distributing carbon flux in GlcNAc production.


Sign in / Sign up

Export Citation Format

Share Document