scholarly journals Influence of Hot Metal Flow State to the Hearth Flow Field during Blast Furnace Tapping

2013 ◽  
Vol 6 (13) ◽  
pp. 2409-2414
Author(s):  
Hong-Wei Guo ◽  
Bing-Ji Yan ◽  
Jian-Liang Zhang ◽  
He-Lan Liang ◽  
Yi-Li Liu
PRICM ◽  
2013 ◽  
pp. 3109-3118
Author(s):  
Guo Hongwei ◽  
Yan Bingji ◽  
Zhu Mengyi ◽  
Zhang Jianliang ◽  
Liu Yili

1990 ◽  
Vol 30 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Kouichirou Shibata ◽  
Yoshio Kimura ◽  
Masakata Shimizu ◽  
Shin-ichi Inaba

1985 ◽  
Vol 71 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Jiro OHNO ◽  
Masaharu TACHIMORI ◽  
Masakazu NAKAMURA ◽  
Yukiaki HARA

2005 ◽  
Author(s):  
Fang Yan ◽  
Chenn Q. Zhou ◽  
D. Huang ◽  
Pinakin Chaubal

Hearth wearing is the key limit of a blast furnace campaign life. Hot metal flow pattern and temperature distributions are the two key variables to determine the rate and style of the hearth wearing. There are several strategies to control and reduce the hearth erosion, such as changing cooling water temperature and changing the heat transfer coefficient. In this paper, both cooling strategies are investigated using a comprehensive computational fluid dynamics (CFD) code, which was developed specifically for the simulation of blast furnace hearth. That program can predict the liquid flow patterns and temperature distributions of the hot metal as well as temperature profiles in the hearth refractory materials under different conditions. The results predicted by the CFD code were compared with actual industrial operation data. The cooling strategies are evaluated based on the energy analysis and effect on the hearth erosion.


2008 ◽  
Vol 48 (9) ◽  
pp. 1182-1187 ◽  
Author(s):  
Chen-En Huang ◽  
Shan-Wen Du ◽  
Wen-Tung Cheng

Author(s):  
Fang Yan ◽  
Chenn Q. Zhou ◽  
D. Huang ◽  
Pinakin Chaubal

Hearth wearing is the key limit of a blast furnace campaign life. Hot metal flow pattern and temperature distributions are the two key variables to determine the rate and style of the hearth wearing. And the shape, structure and position of the deadman are the three major variables to assign the fluid flow pattern and temperature profile in the hearth. In this paper, a comprehensive computational fluid dynamics (CFD) program which was developed specifically for the simulation of blast furnace hearth was extensively evaluated using actual industrial operation data. That program can predict the liquid flow patterns and temperature distributions of the hot metal as well as temperature profiles in the hearth refractory materials under different conditions. Sensitivity study has also been performed to investigate the effect of the production rate on refractory temperature distribution.


2001 ◽  
Vol 30 (4) ◽  
pp. 225-231 ◽  
Author(s):  
Matti Juhani Luomala ◽  
Olli Juhani Mattila ◽  
Jouko Juhani Harkki

Author(s):  
Fang Yan ◽  
Chenn Q. Zhou ◽  
D. Huang ◽  
Pinakin Chaubal

Hearth wearing is the key limit of a blast furnace campaign life. Hot metal flow pattern and temperature distributions are the two key variables to determine the rate and style of the hearth wearing. And the shape, structure and position of the deadman are the three major variables to assign the fluid flow pattern and temperature profile in the hearth. In this paper, a new method for deadman description was put forward and a comprehensive computational fluid dynamics (CFD) code was described, which was developed specifically for the simulation of blast furnace hearth. That program can predict the liquid flow patterns and temperature distributions of the hot metal as well as temperature profiles in the hearth refractory materials under different conditions. The results predicted by the CFD code were evaluated by comparing with actual industrial operation data.


Author(s):  
Chenn Q. Zhou ◽  
D. (Frank) Huang ◽  
Yongfu Zhao ◽  
Pinakin Chaubal

The campaign life of an iron blast furnace depends on hearth wear. Distributions of liquid iron flow and refractory temperatures have a significant influence on hearth wear. A 3D comprehensive computational fluid dynamics model has been developed specifically for simulating the blast furnace hearth. It includes both the hot metal flow and the conjugate heat transfer through the refractories. The model has been extensively validated using measurement data from Mittal Steel old, new IH7 blast furnace and U.S. Steel 13 blast furnace. Good agreements between measured and calculated refractory temperature profiles have been achieved. It has been used to analyze the velocity and temperature distributions and wear patterns of different furnaces and operating conditions. The results can be used to predict the inner profile of hearth and to provide guidance for protecting the hearth.


Sign in / Sign up

Export Citation Format

Share Document