flow pattern
Recently Published Documents


TOTAL DOCUMENTS

3670
(FIVE YEARS 659)

H-INDEX

81
(FIVE YEARS 8)

2022 ◽  
Vol 3 ◽  
Author(s):  
Jie Zong ◽  
Jun Yue

Colloidal suspensions of nanoparticles (e.g., metals and oxides) have been considered as a promising working fluid in microreactors for achieving significant process intensification. Existing examples include their uses in microflow as catalysts for enhancing the reaction efficiency, or as additives to mix with the base fluid (i.e., to form the so-called nanofluids) for heat/mass transfer intensification. Thus, hydrodynamic characterization of such suspension flow in microreactors is of high importance for a rational design and operation of the system. In this work, experiments have been conducted to investigate the flow pattern and pressure drop characteristics under slug flow between N2 gas and colloidal suspensions in the presence of TiO2 or Al2O3 nanoparticles through polytetrafluoroethylene (PTFE) capillary microreactors. The base fluid consisted of water or its mixture with ethylene glycol. The slug flow pattern with nanoparticle addition was characterized by the presence of a lubricating liquid film around N2 bubbles, in contrast to the absence of liquid film in the case of N2-water slug flow. This shows that the addition of nanoparticles has changed the wall wetting property to be more hydrophilic. Furthermore, the measured pressure drop under N2-nanoparticle suspension slug flow is well described by the model of Kreutzer et al. (AIChE J 51(9):2428–2440, 2005) at the mixture Reynolds numbers ca. above 100 and is better predicted by the model of Warnier et al. (Microfluidics and Nanofluidics 8(1):33–45, 2010) at lower Reynolds numbers given a better consideration of the effect of film thickness and bubble velocity under such conditions in the latter model. Therefore, the employed nanoparticle suspension can be considered as a stable and pseudo single phase with proper fluid properties (e.g., viscosity and density) when it comes to the pressure drop estimation.


ACS Omega ◽  
2022 ◽  
Author(s):  
Yongchao Rao ◽  
Zehui Liu ◽  
Shuli Wang ◽  
Lijun Li

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 146
Author(s):  
Agata Małysiak ◽  
Tomasz Walica ◽  
Tomasz Fronczyk ◽  
Marcin Lemanowicz

In this paper, the influence of hydrodynamic conditions in Kenics static mixer, which acts as a multifunctional reactor, on precipitation kinetics of barium sulfate is investigated. The investigated range of the Reynolds number varied between 500 and 5000, which covered both laminar and turbulent flow regimes. In all experiments, the relative supersaturation was maintained at the constant level (s = 205). The obtained precipitate was collected and used for crystal size distribution (CSD) determination. On that basis, the kinetic parameters of the process were calculated using the mixed suspension mixed product removal (MSMPR) mathematical model of the process. It was found that for the whole investigated range of Reynolds number, the mixing conditions were satisfactory. CSD analysis showed that in the laminar regime, a clear tendency in crystal behavior could not be noticed. However, during the analysis of the turbulent regime, the presence of a critical Reynolds number was noticed. Above this value, there is a change in the flow pattern, which results in a change of kinetic parameters (B, G), as well as manifests in a form of a decrease in the value of mean diameters of crystals. The flow pattern change is caused by the geometry of the reactor’s inserts.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Rui Shen ◽  
Zhiming Hu ◽  
Xianggang Duan ◽  
Wei Sun ◽  
Wei Xiong ◽  
...  

Shale gas reservoirs have pores of various sizes, in which gas flows in different patterns. The coexistence of multiple gas flow patterns is common. In order to quantitatively characterize the flow pattern in the process of shale gas depletion development, a physical simulation experiment of shale gas depletion development was designed, and a high-pressure on-line NMR analysis method of gas flow pattern in this process was proposed. The signal amplitudes of methane in pores of various sizes at different pressure levels were calculated according to the conversion relationship between the NMR T 2 relaxation time and pore radius, and then, the flow patterns of methane in pores of various sizes under different pore pressure conditions were analyzed as per the flow pattern determination criteria. It is found that there are three flow patterns in the process of shale gas depletion development, i.e., continuous medium flow, slip flow, and transitional flow, which account for 73.5%, 25.8%, and 0.7% of total gas flow, respectively. When the pore pressure is high, the continuous medium flow is dominant. With the gas production in shale reservoir, the pore pressure decreases, the Knudsen number increases, and the pore size range of slip flow zone and transitional flow zone expands. When the reservoir pressure is higher than the critical desorption pressure, the adsorbed gas is not desorbed intensively, and the produced gas is mainly free gas. When the reservoir pressure is lower than the critical desorption pressure, the adsorbed gas is gradually desorbed, and the proportion of desorbed gas in the produced gas gradually increases.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Bo Chen ◽  
Xiaowu Chen ◽  
Zuchao Zhu ◽  
Xiaojun Li

The blade load distributions reflect the working characteristics of centrifugal impellers, and the vortexes in the impeller channel affect the blade load distribution, but the mechanism of this phenomenon is still unclear. In this study, particle image velocimetry (PIV) was adopted to clarify the correlation between the internal flow pattern and the blade load distribution. The internal flow pattern and the blade load distribution were presented under different working conditions to study the influence of the internal flow pattern on the blade load. Results showed that the vortexes in the flow channel redistributed the blade load. The clockwise vortex made the position of the maximum blade load closer to the outlet, while the counterclockwise vortex had the opposite effect. Meanwhile, the vortexes caused the blade load distribution to be steeper, which reduced energy conversion efficiency. Moreover, the mean absolute flow angle was introduced to explain the mechanism of the effects of vortexes on blade load. The results can be used as a theoretical basis for the design of high-performance impellers.


2022 ◽  
Author(s):  
Tony Di Fabbio ◽  
Eike Tangermann ◽  
Markus Klein

2022 ◽  
Vol 2150 (1) ◽  
pp. 012030
Author(s):  
V D Meshkova ◽  
A A Dekterev ◽  
D A Dekterev ◽  
A S Lobasov

Abstract This paper presents the results of working out the methodology for conducting experimental studies of the flow around the objects modeling the urban environmental conditions. The experiments were conducted in the wind tunnel of the Siberian Federal University. Two objects of different heights imitating buildings were considered the models. Special attention was paid to the study of the flow pattern at the tandem arrangement of model buildings. Visualizing the flow, the low-velocity and high-velocity zones, as well as recirculation areas were identified. At that, these zones had their peculiarities in terms of the direction of flow twisting behind each object. The study allowed revealing that the vortices separating from the edges of the studied objects play a special role in the flow formation.


Sign in / Sign up

Export Citation Format

Share Document