scholarly journals The total disjoint irregularity strength of some certain graphs

2020 ◽  
Vol 4 (2) ◽  
pp. 91
Author(s):  
Meilin I Tilukay ◽  
A. N. M. Salman

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Under a totally irregular total </span><em>k</em><span>-labeling of a graph </span><span><em>G</em> </span><span>= (</span><span><em>V</em>,<em>E</em></span><span>), we found that for some certain graphs, the edge-weight set </span><em>W</em><span>(</span><em>E</em><span>) and the vertex-weight set </span><em>W</em><span>(</span><em>V</em><span>) of </span><span><em>G</em> </span><span>which are induced by </span><span><em>k</em> </span><span>= </span><span>ts</span><span>(</span><em>G</em><span>), </span><em>W</em><span>(</span><em>E</em><span>) </span><span>∩ </span><em>W</em><span>(</span><em>V</em><span>) is a non empty set. For which </span><span>k</span><span>, a graph </span><span>G </span><span>has a totally irregular total labeling if </span><em>W</em><span>(</span><em>E</em><span>) </span><span>∩ </span><em>W</em><span>(</span><em>V</em><span>) = </span><span>∅</span><span>? We introduce the total disjoint irregularity strength, denoted by </span><span>ds</span><span>(</span><em>G</em><span>), as the minimum value </span><span><em>k</em> </span><span>where this condition satisfied. We provide the lower bound of </span><span>ds</span><span>(</span><em>G</em><span>) and determine the total disjoint irregularity strength of cycles, paths, stars, and complete graphs.</span></p></div></div></div>

2020 ◽  
Vol 4 (1) ◽  
pp. 10
Author(s):  
I Nengah Suparta ◽  
I Gusti Putu Suharta

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Let </span><em>G</em><span>(</span><span><em>V</em>, <em>E</em></span><span>) </span><span>be a finite simple graph and </span><span>k </span><span>be some positive integer. A vertex </span><em>k</em><span>-labeling of graph </span><em>G</em>(<em>V,E</em>), Φ : <em>V</em> → {1,2,..., <em>k</em>}, is called edge irregular <em>k</em>-labeling if the edge weights of any two different edges in <em>G</em> are distinct, where the edge weight of <em>e</em> = <em>xy</em> ∈ <em>E</em>(<em>G</em>), w<sub>Φ</sub>(e), is defined as <em>w</em><sub>Φ</sub>(<em>e</em>) = Φ(<em>x</em>) + Φ(<em>y</em>). The edge irregularity strength for graph G is the minimum value of k such that Φ is irregular edge <em>k</em>-labeling for <em>G</em>. In this note we derive the edge irregularity strength of chain graphs <em>mK</em><sub>3</sub>−path for m ≢ 3 (mod4) and <em>C</em>[<em>C<sub>n</sub></em><sup>(<em>m</em>)</sup>] for all positive integers <em>n</em> ≡ 0 (mod 4) 3<em>n</em> and <em>m</em>. We also propose bounds for the edge irregularity strength of join graph <em>P<sub>m</sub></em> + <em>Ǩ<sub>n</sub></em> for all integers <em>m, n</em> ≥ 3.</p></div></div></div>


2019 ◽  
Vol 25 (3) ◽  
pp. 314-324
Author(s):  
Rismawati Ramdani ◽  
A.N.M Salman ◽  
Hilda Assiyatun

Let $G=(V(G),E(G))$ be a graph and $k$ be a positive integer. A total $k$-labeling of $G$ is a map $f: V(G)\cup E(G)\rightarrow \{1,2,\ldots,k \}$. The edge weight $uv$ under the labeling $f$ is denoted by $w_f(uv)$ and defined by $w_f(uv)=f(u)+f(uv)+f(v)$. The vertex weight $v$ under the labeling $f$ is denoted by $w_f(v)$ and defined by $w_f(v) = f(v) + \sum_{uv \in{E(G)}} {f(uv)}$. A total $k$-labeling of $G$ is called an edge irregular total $k$-labeling of $G$ if  $w_f(e_1)\neq w_f(e_2)$ for every two distinct edges $e_1$ and $e_2$  in $E(G)$.  The total edge irregularity strength of $G$, denoted by $tes(G)$, is the minimum $k$ for which $G$ has an edge irregular total $k$-labeling.  A total $k$-labeling of $G$ is called a vertex irregular total $k$-labeling of $G$ if  $w_f(v_1)\neq w_f(v_2)$ for every two distinct vertices $v_1$ and $v_2$ in $V(G)$.  The total vertex irregularity strength of $G$, denoted by $tvs(G)$, is the minimum $k$ for which $G$ has a vertex irregular total $k$-labeling.  In this paper, we determine the total edge irregularity strength and the total vertex irregularity strength of some graphs obtained from star, which are gear, fungus, and some copies of stars.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-38
Author(s):  
Ali Bibak ◽  
Charles Carlson ◽  
Karthekeyan Chandrasekaran

Finding locally optimal solutions for MAX-CUT and MAX- k -CUT are well-known PLS-complete problems. An instinctive approach to finding such a locally optimum solution is the FLIP method. Even though FLIP requires exponential time in worst-case instances, it tends to terminate quickly in practical instances. To explain this discrepancy, the run-time of FLIP has been studied in the smoothed complexity framework. Etscheid and Röglin (ACM Transactions on Algorithms, 2017) showed that the smoothed complexity of FLIP for max-cut in arbitrary graphs is quasi-polynomial. Angel, Bubeck, Peres, and Wei (STOC, 2017) showed that the smoothed complexity of FLIP for max-cut in complete graphs is ( O Φ 5 n 15.1 ), where Φ is an upper bound on the random edge-weight density and Φ is the number of vertices in the input graph. While Angel, Bubeck, Peres, and Wei’s result showed the first polynomial smoothed complexity, they also conjectured that their run-time bound is far from optimal. In this work, we make substantial progress toward improving the run-time bound. We prove that the smoothed complexity of FLIP for max-cut in complete graphs is O (Φ n 7.83 ). Our results are based on a carefully chosen matrix whose rank captures the run-time of the method along with improved rank bounds for this matrix and an improved union bound based on this matrix. In addition, our techniques provide a general framework for analyzing FLIP in the smoothed framework. We illustrate this general framework by showing that the smoothed complexity of FLIP for MAX-3-CUT in complete graphs is polynomial and for MAX - k - CUT in arbitrary graphs is quasi-polynomial. We believe that our techniques should also be of interest toward showing smoothed polynomial complexity of FLIP for MAX - k - CUT in complete graphs for larger constants k .


2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


10.37236/2102 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Geoffrey Exoo

The lower bound for the classical Ramsey number $R(4,6)$ is improved from 35 to 36. The author has found 37 new edge colorings of $K_{35}$ that have no complete graphs of order 4 in the first color, and no complete graphs of order 6 in the second color. The most symmetric of the colorings has an automorphism group of order 4, with one fixed point, and is presented in detail. The colorings were found using a heuristic search procedure.


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


2020 ◽  
Vol 12 (4) ◽  
pp. 537-543
Author(s):  
A. Rana

A labeling of a graph is a mapping that maps some set of graph elements to a set of numbers (usually positive integers).  For a simple graph G = (V, E) with vertex set V and edge set E, a labeling  Φ: V ∪ E → {1, 2, ..., k} is called total k-labeling. The associated vertex weight of a vertex x∈ V under a total k-labeling  Φ is defined as wt(x) = Φ(x) + ∑y∈N(x) Φ(xy) where N(x) is the set of neighbors of the vertex x. A total k-labeling is defined to be a vertex irregular total labeling of a graph, if for every two different vertices x and y of G, wt(x)≠wt(y). The minimum k for which  a graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G, tvs(G). In this paper, total vertex irregularity strength of interval graphs is studied. In particular, an efficient algorithm is designed to compute tvs of proper interval graphs and bounds of tvs is presented for interval graphs.


10.37236/239 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaodong Xu ◽  
Stanisław P. Radziszowski

In this note we show how to extend Mathon's cyclotomic colorings of the edges of some complete graphs without increasing the maximum order of monochromatic complete subgraphs. This improves the well known lower bound construction for multicolor Ramsey numbers, in particular we obtain $R_3(7) \ge 3214$.


2018 ◽  
Vol 197 ◽  
pp. 01007
Author(s):  
Rismawati Ramdani ◽  
Muhammad Ali Ramdhani

Let G = (V (G),E(G)) be a graph and k be a positive integer. A total k-labeling of G is a map f : V (G) ∪ E(G) → {1,2...,k}. The vertex weight v under the labeling f is denoted by Wf(v) and defined by Wf(v) = f(v) + Σuv∈E(G)f(uv). A total k-labeling of G is called vertex irregular if there are no two vertices with the same weight. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum k such that G has a vertex irregular total k-labeling. This labeling was introduced by Bača, Jendrol', Miller, and Ryan in 2007. Let G and H be two connected graphs. Let o be a vertex of H . The comb product between G and H, in the vertex o, denoted by G⊳o H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G. In this paper, we determine the total vertex irregularity strength of comb product of Cn and Cm where m ∈ {1,2}.


Sign in / Sign up

Export Citation Format

Share Document