scholarly journals One method for minimization a convex Lipschitz-continuous function of two variables on a fixed square

2019 ◽  
Vol 11 (3) ◽  
pp. 379-395
Author(s):  
Dmitry Arkad'evich Pasechnyuk ◽  
Fedor Sergeevich Stonyakin
Author(s):  
L. E. Fraenkel

SynopsisLetFbe any closed subset of ℝN. Stein's regularized distance is a smooth (C∞) function, defined on the complementcF, that approximates the distance fromFof any pointx ∈cFin the manner shown by the inequalities (*) in the Introduction below. In this paper we use a method different from Stein's to construct a one-parameter family of smooth approximations to any positive Lipschitz continuous function, with the effect that the constants in (*) can be made arbitrarily close to 1. It is shown that partial derivatives of order two or more, while necessarily unbounded, are best possible in order of magnitude.


2013 ◽  
Vol 15 (3) ◽  
pp. 251
Author(s):  
Chunfang LIU ◽  
Yongqiang FU ◽  
Yuesheng LUO ◽  
Shilei ZHANG

Author(s):  
Malte Gerhold ◽  
Orr Moshe Shalit

Abstract Let $q = e^{i \theta } \in \mathbb{T}$ (where $\theta \in \mathbb{R}$), and let $u,v$ be $q$-commuting unitaries, that is, $u$ and $v$ are unitaries such that $vu = quv$. In this paper, we find the optimal constant $c = c_{\theta }$ such that $u,v$ can be dilated to a pair of operators $c U, c V$, where $U$ and $V$ are commuting unitaries. We show that $$\begin{equation*} c_{\theta} = \frac{4}{\|u_{\theta}+u_{\theta}^*+v_{\theta}+v_{\theta}^*\|}, \end{equation*}$$where $u_{\theta }, v_{\theta }$ are the universal $q$-commuting pair of unitaries, and we give numerical estimates for the above quantity. In the course of our proof, we also consider dilating $q$-commuting unitaries to scalar multiples of $q^{\prime}$-commuting unitaries. The techniques that we develop allow us to give new and simple “dilation theoretic” proofs of well-known results regarding the continuity of the field of rotations algebras. In particular, for the so-called “almost Mathieu operator” $h_{\theta } = u_{\theta }+u_{\theta }^*+v_{\theta }+v_{\theta }^*$, we recover the fact that the norm $\|h_{\theta }\|$ is a Lipschitz continuous function of $\theta $, as well as the result that the spectrum $\sigma (h_{\theta })$ is a $\frac{1}{2}$-Hölder continuous function in $\theta $ with respect to the Hausdorff metric. In fact, we obtain this Hölder continuity of the spectrum for every self-adjoint *-polynomial $p(u_{\theta },v_{\theta })$, which in turn endows the rotation algebras with the natural structure of a continuous field of C*-algebras.


Sign in / Sign up

Export Citation Format

Share Document