scholarly journals Degradationof Laundrywastewater By Electrolysis Method Using Carbon Electrode

2016 ◽  
Vol 1 (2) ◽  
pp. 61-73
Author(s):  
Teguh Imam Handoko ◽  
Riyanto Riyanto ◽  
Tatang Shabur Julianto
2016 ◽  
Vol 2 (1) ◽  
pp. 61-73
Author(s):  
Teguh Imam Handoko ◽  
Riyanto Riyanto ◽  
Tatang Shabur Julianto

2016 ◽  
Vol 1 (2) ◽  
pp. 61-73
Author(s):  
Teguh Imam Handoko ◽  
Riyanto Riyanto ◽  
Tatang Shabur Julianto

1969 ◽  
Vol 55 (13) ◽  
pp. 1263-1269 ◽  
Author(s):  
Sizuya MAEKAWA ◽  
Yasuhiko SHIGA
Keyword(s):  

2016 ◽  
Vol 8 (3) ◽  
pp. 03017-1-03017-7 ◽  
Author(s):  
I. F. Myronyuk ◽  
◽  
V. I. Mandzyuk ◽  
V. M. Sachko ◽  
R. P. Lisovsky ◽  
...  

2020 ◽  
Vol 16 (4) ◽  
pp. 424-437
Author(s):  
Kubra Ozturk ◽  
Nurgul K. Bakirhan ◽  
Sibel A. Ozkan ◽  
Bengi Uslu

Background:: new and selective electrochemical sensor was developed for the determination of levocetirizine dihydrochloride, which is an antihistaminic drug. Method:: The investigation was performed by using cyclic, differential pulse and square wave voltammetric methods on the β-cyclodextrin modified glassy carbon electrode. It is thereby planned to obtain information about levocetirizine determination and its mechanism. Result:: The efficiency of experimental parameters including pH, scan rate, and accumulation potential and time on the anodic response of levocetirizine dihydrochloride was studied. By employing the developed method and under optimized conditions, the current showed linear dependence with a concentration in the range between 2 × 10-8 M and 6 × 10-6 M in pH 2.0 Britton Robinson (BR) buffer. Conclusion:: The achieved limits of detection and quantification were found as 3.73 × 10-10 M and 1.24 × 10-9 M, respectively. In addition, the possibility of applying the developed sensor for real sample analysis was investigated, so β-cyclodextrin modified glassy carbon electrode was used to determine levocetirizine dihydrochloride in Xyzal® tablet dosage form. Finally, this sensor was successfully applied to the real sample as a selective, simple, reproducible, repeatable electrochemical sensor.


2019 ◽  
Vol 15 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Ali Samadzadeh ◽  
Iran Sheikhshoaie ◽  
Hassan Karimi-Maleh

Background: Simultaneous analysis of epinephrine and tyrosine as two effective and important biological compounds in human blood and urine samples are very important for the investigation of human health. Objective: In this research, a highly effective voltammetric sensor fabricated for simultaneous analysis of epinephrine and tyrosine. The sensor was fabricated by the modification of glassy carbon electrode with ZnO-Pt/CNTs nanocomposite (ZnO-Pt/CNTs/GCE). The synthesized nanocomposite was characterized by SEM method. The ZnO-Pt/CNTs/GCE showed two separated oxidation signals at potential ~220 mV and 700 mV for epinephrine and tyrosine, respectively. Also, we detected linear dynamic ranges 0.5-250.0 µM and 1.0-220 µM with a limit of detections 0.1 µM and 0.5 µM for the determination of epinephrine and tyrosine, respectively. The ZnO-Pt/CNTs/GCE was used for the determination of epinephrine and tyrosine in blood serum and human urine samples.


Sign in / Sign up

Export Citation Format

Share Document