real sample analysis
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 52)

H-INDEX

15
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Joo-Yoon Noh ◽  
Moon-Ju Kim ◽  
Jong-Min Park ◽  
Tae Gyeong Yun ◽  
Min-Jung Kang ◽  
...  

AbstractVitamin D deficiency is associated with various disorders and is diagnosed based on the concentration of 25-hydroxy vitamin D3 (25(OH)D3) in serum. The parylene matrix chip was fabricated to reduce the matrix background noise, and the homogenous distribution of the matrix was retained for the quantitative analysis of 25(OH)D3. The Amplex Red assay was performed to confirm that the sample-matrix mixing zone of the parylene matrix chip was formed below the surface of the parylene-N film. The homogeneous distribution of the matrix was verified from the fluorescence image. For effective analysis using a parylene matrix chip, 25(OH)D3 was modified through the nucleophilic addition of betaine aldehyde (BA) to form a hemiacetal salt. Such modified 25(OH)D3 with a positive charge from BA could be effectively analyzed using MALDI-TOF mass spectrometry. Serum 25(OH)D3 was extracted by liquid–liquid extraction (LLE) and quantified using MALDI-TOF mass spectrometry based on the parylene matrix chip. The intensity of the mass peak of 25(OH)D3 was linearly correlated (r2 = 0.992) with the concentration of 25(OH)D3 spiked in serum, and the LOD was 0.0056 pmol/μL. Energy drinks and vitamin D3 tablets were also employed for the real sample analysis. Finally, the results of the chemiluminescence binding assay and MALDI-TOF mass spectrometry were statistically analyzed to determine the applicability of the method using the Bland–Altman test and Passing–Bablok regression.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 120
Author(s):  
Cecilia Lete ◽  
David López-Iglesias ◽  
Juan José García-Guzmán ◽  
Sorina-Alexandra Leau ◽  
Adina Elena Stanciu ◽  
...  

In this work, the development of an electrochemical sensor for melatonin determination is presented. The sensor was based on Sonogel-Carbon electrode material (SNGCE) and Au nanoparticles (AuNPs). The low-cost and environmentally friendly SNGCE material was prepared by the ultrasound-assisted sonogel method. AuNPs were prepared by a chemical route and narrow size distribution was obtained. The electrochemical characterization of the SNGCE/AuNP sensor was carried out by cyclic voltammetry in the presence of a redox probe. The analytical performance of the SNGCE/AuNP sensor in terms of linear response range, repeatability, selectivity, and limit of detection was investigated. The optimized SNGCE/AuNP sensor displayed a low detection limit of 8.4 nM melatonin in synthetic samples assessed by means of the amperometry technique. The potential use of the proposed sensor in real sample analysis and the anti-matrix capability were assessed by a recovery study of melatonin detection in human peripheral blood serum with good accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8301
Author(s):  
Ema Gričar ◽  
Kurt Kalcher ◽  
Boštjan Genorio ◽  
Mitja Kolar

Four different graphene-based nanomaterials (htGO, N-htGO, htGONR, and N-htGONR) were synthesized, characterized, and used as a modifier of carbon paste electrode (CPE) in order to produce a reliable, precise, and highly sensitive non-enzymatic amperometric hydrogen peroxide sensor for complex matrices. CPE, with their robustness, reliability, and ease of modification, present a convenient starting point for the development of new sensors. Modification of CPE was optimized by systematically changing the type and concentration of materials in the modifier and studying the prepared electrode surface by cyclic voltammetry. N-htGONR in combination with manganese dioxide (1:1 ratio) proved to be the most appropriate material for detection of hydrogen peroxide in pharmaceutical and saliva matrices. The developed sensor exhibited a wide linear range (1.0–300 µM) and an excellent limit of detection (0.08 µM) and reproducibility, as well as high sensitivity and stability. The sensor was successfully applied to real sample analysis, where the recovery values for a commercially obtained pharmaceutical product were between 94.3% and 98.0%. Saliva samples of a user of the pharmaceutical product were also successfully analyzed.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 502
Author(s):  
Kaveh Moulaee ◽  
Giovanni Neri

The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lih Poh Lin ◽  
Shiau-Ying Tham ◽  
Hwei-San Loh ◽  
Michelle T. T. Tan

AbstractGraphene-based materials have gained remarkable attention in numerous disciplines owing to their unique electrochemical properties. Out of various hybridized nanocomposites, graphene-zirconia nanocomposite (GZ) was distinctive due to its biocompatibility. Zirconia nanoparticles serve as spacers that reduce the stacking of graphene and improve the electrochemical performance of the material. Considering that lungs and skin suffer the greatest exposure to nanoparticles, this study aimed to evaluate the cytotoxicity of the as-synthesized GZ nanocomposites on MRC5 (lung cells) and HaCaT (skin cells) via morphological observation and cell viability assay using 3-(4,5 dimethylthiazol-2-yl)-(2,5-diphenyltetrazolium bromide) tetrazolium (MTT). GZ-treated cells showed a comparable proliferation rate and morphology with untreated cells under microscopic evaluation. Based on MTT results, the IC50 values of GZ were > 500 µg/ml for MRC5 and HaCaT cells. The excellent biocompatibility was the supremacy of GZ over other nanocomposites applied as electrode materials in biosensors. GZ was functionalized with biolinker for the detection of carcinoembryonic antigen (CEA). The proposed immunosensor exhibited good responses towards CEA detection, with a 4.25 pg/ml LOD and correlation coefficient of R2 = 0.99 within a linear working range from 0.01 to 10 ng/ml. The performance of the immunosensor to detect CEA present in human serum was also evaluated. Good recovery of CEA was found, suggesting that the proposed immunosensor possess a high affinity to CEA even in a complex biological matrix, rendering it a promising sensing platform for real sample analysis and open a new way for the detection of cancer-associated proteins.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 462
Author(s):  
Yangguang Zhu ◽  
Qichen Tian ◽  
Xiufen Li ◽  
Lidong Wu ◽  
Aimin Yu ◽  
...  

Considering the vital physiological functions of dopamine (DA) and uric acid (UA) and their coexistence in the biological matrix, the development of biosensing techniques for their simultaneous and sensitive detection is highly desirable for diagnostic and analytical applications. Therefore, Ti3C2Tx/rGO heterostructure with a double-deck layer was fabricated through electrochemical reduction. The rGO was modified on a porous Ti3C2Tx electrode as the biosensor for the detection of DA and UA simultaneously. Debye length was regulated by the alteration of rGO mass on the surface of the Ti3C2Tx electrode. Debye length decreased with respect to the rGO electrode modified with further rGO mass, indicating that fewer DA molecules were capable of surpassing the equilibrium double layer and reaching the surface of rGO to achieve the voltammetric response of DA. Thus, the proposed Ti3C2Tx/rGO sensor presented an excellent performance in detecting DA and UA with a wide linear range of 0.1–100 μM and 1–1000 μM and a low detection limit of 9.5 nM and 0.3 μM, respectively. Additionally, the proposed Ti3C2Tx/rGO electrode displayed good repeatability, selectivity, and proved to be available for real sample analysis.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2562
Author(s):  
Raja Saad Alruwais ◽  
Waheed A. Adeosun ◽  
Hadi M. Marwani ◽  
Mohammad Jawaid ◽  
Abdullah M. Asiri ◽  
...  

Lead is a potentially toxic element (PTE) that has several adverse medical effects in humans. Its presence in the environment became prominent due to anthropogenic activities. The current study explores the use of newly developed composite materials (organic–inorganic hybrid) based on PANI-GO-APTES for electrochemical detection of Pb2+ in aqueous solution. The composite material (PANI-GO-APTES) was synthesized by chemical method and was characterized with SEM, XPS, XEDS, XRD, TGA, FTIR, EIS and CV. The result of characterization indicates the successful synthesis of the intended material. The PANI-GO-APTES was successfully applied for electrochemical detection of Pb2+ using cyclic voltammetry and linear sweep voltammetry method. The limit of detection of Pb2+ was 0.0053 µM in the linear range of 0.01 µM to 0.4 µM. The current response produced during the electrochemical reduction of Pb2+ catalyzed by PANI-GO-APTES was also very repeatable, reproducible and rapid. The application of PANI-GO-APTES-modified GCE in real sample analysis was also established. Therefore, PANI-GO-APTES is presented as a potential Pb2+ sensor for environmental and human health safety.


Surfaces ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 191-204
Author(s):  
Edwin S. D’Souza ◽  
Jamballi G. Manjunatha ◽  
Chenthattil Raril ◽  
Girish Tigari ◽  
Huligerepura J. Arpitha ◽  
...  

A modest, efficient, and sensitive chemically modified electrode was fabricated for sensing curcumin (CRC) through an electrochemically polymerized titan yellow (TY) modified carbon paste electrode (PTYMCPE) in phosphate buffer solution (pH 7.0). Cyclic voltammetry (CV) linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) approaches were used for CRC detection. PTYMCPE interaction with CRC suggests that the electrode exhibits admirable electrochemical response as compared to bare carbon paste electrode (BCPE). Under the optimized circumstances, a linear response of the electrode was observed for CRC in the concentration range 2 × 10−6 M to 10 × 10−6 M with a limit of detection (LOD) of 10.94 × 10−7 M. Moreover, the effort explains that the PTYMCPE electrode has a hopeful approach for the electrochemical resolution of biologically significant compounds. Additionally, the proposed electrode has demonstrated many advantages such as easy preparation, elevated sensitivity, stability, and enhanced catalytic activity, and can be successfully applied in real sample analysis.


Sign in / Sign up

Export Citation Format

Share Document