selective determination
Recently Published Documents


TOTAL DOCUMENTS

1602
(FIVE YEARS 306)

H-INDEX

64
(FIVE YEARS 10)

Author(s):  
Jyoti . ◽  
Renata Rybakiewicz ◽  
Teresa Zolek ◽  
Dorota Maciejewska ◽  
Edyta Gilant ◽  
...  

An electrochemical chemosensor for cilostazol (CIL) determination was devised, engineered, and tested. For that, a unique conducting film of the functionalized thiophene-appended carbazole-based polymer, molecularly imprinted with cilostazol (MIP-CIL), was...


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 94-103
Author(s):  
Tamer Awad Ali ◽  
Gehad G. Mohamed

A carbon paste and screen-printed sensor for Ce(iii)-selective determination were prepared using a 2,6-pyridine dicarbomethine-triethylene tetraamine macrocyclic Schiff base ligand and multi-walled carbon nanotubes as good sensing materials.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Huaxu Zhou ◽  
Guotao Dong ◽  
Ajabkhan Sailjoi ◽  
Jiyang Liu

Three-dimensional graphene (3DG) with macroporous structure has great potential in the field of electroanalysis owing to a large active area, excellent electron mobility and good mass transfer. However, simple and low-cost preparation of 3DG electrodes with high electrocatalytic ability is still a challenge. Here, a fast and convenient electrochemical polarization method is established to pretreat free-standing 3DG (p-3DG) to offer high electrocatalytic ability. 3DG with monolithic and macroporous structure prepared by chemical vapor deposition (CVD) is applied as the starting electrode. Electrochemical polarization is performed using electrochemical oxidation (anodization) at high potential (+6 V) followed with electrochemical reduction (cathodization) at low potential (−1 V), leading to exposure of edge of graphene and introduction of oxygen-containing groups. The as-prepared p-3DG displays increased hydrophilicity and improved electrocatalytic ability. As a proof of concept, p-3DG was used to selective electrochemical detection of two isomers of benzenediol, hydroquinone (p-BD) and catechol (o-BD). In comparison with initial 3DG, p-3DG exhibits increased reversibility of redox reaction, improved peak current and good potential resolution with high potential separation between p-BD and o-BD. Individual or selective determination of p-BD or o-BD in single substance solution or binary mixed solution is realized. Real analysis of pond water is also achieved.


2021 ◽  
Vol 87 (12) ◽  
pp. 11-16
Author(s):  
E. I. Shinko ◽  
O. V. Farafonova ◽  
T. N. Ermolaeva

Conditions for the preparation of carbon nanomaterials for embedding into the discerning layer of a piezoelectric immunosensor are described. The effect of the oxidation method, temperature, and the duration of treatment of nanomaterials with an oxidizing agent on the surface concentration of active functional groups is demonstrated. It is shown that the use of carboxylated carbon nanotubes (CNT) increases the efficiency of their binding to biomolecules and increases the stability of the discerning layer of a piezoelectric sensor when measurements are carried out in liquid media. Conditions for the determination of antibiotics using piezoelectric immunosensors modified with carbon nanomaterial were studied including the choice of immunoreagent concentrations and assessment of the selectivity of antibiotic determination. The CNT-based piezoelectric immunosensors providing rapid, highly sensitive, and selective determination of the analyte at the MRL level and below it in food products and biological fluids are proposed.


2021 ◽  
Vol 87 (12) ◽  
pp. 17-22
Author(s):  
E. G. Khomutova

The problem of studying the level of technogenic pollution of the environment with platinum group metals is attributed first to the release of platinum metals into the environment together with the exhaust gases of cars using afterburning catalysts containing Pt, Pd, Rh. The pharmaceutical, electronics and jewelry industries the waste of which contains PGMs also contribute to the pollution of the environment. A number of studies have shown the toxic effects of PGM on humans. The goal of the study is to obtain new information about the level of technogenic pollution of the environment with platinum group metals (such as water-washings from roads, bio-collector plants, roadside dust), which necessitates developing of the method for sample preparation and determination of rhodium and iridium. A technique of sample opening and determination of rhodium and iridium in environmental objects, water-washings from roads, bio-collector plants, roadside dust is proposed. To increase the selectivity of rhodium determination, the samples were treated with a mixture of concentrated perchloric acid and sodium periodate when heated to boiling, which provided more than 5-fold increase the rhodium signal. Moreover, the permissible excess of iridium and ruthenium was increased by 5 and 20 times, respectively, due to the conversion of other PGMs into catalytically inactive forms. The indicator reaction of sulfarsazen oxidation by periodate was used in the kinetic determination of rhodium and iridium. The correctness of the results obtained by the developed method was confirmed by the ETAAS method. The determined content of Rh and Ir: in roadside waters (μg/liter) up to 0.015 and 0.005; in collector plants (g/ton) up to 0.030 Rh and 0.022; in street dust (g/ton) up to 0.05 and 0.025, respectively. The standard deviation of the repeatability of the determination results does not exceed 0.07 (Rh) and 0.12 (Ir). The developed method of opening samples and determining rhodium and iridium in environmental objects provided a great bulk of information about the content of rhodium and iridium in water-flushes from Moscow roads, bio-collector plants, roadside dust, which correlate fairly well with the scarce data from other geographic regions available in the literature and our earlier results on rhodium content in dust. The developed technique made it possible to obtain data on the level of technical pollution of the environment with PGMs in places with different traffic density in Moscow.


Sign in / Sign up

Export Citation Format

Share Document