scholarly journals Interval-Valued Vector Optimization Problems Involving Generalized Approximate Convexity

Author(s):  
Mohsine Jennane ◽  
Lhoussain El Fadil ◽  
El Mostafa Kalmoun

Interval-valued functions have been widely used to accommodate data inexactness in optimization and decision theory. In this paper, we study interval-valued vector optimization problems, and derive their relationships to interval variational inequality problems, of both Stampacchia and Minty types. Using the concept of interval approximate convexity, we establish necessary and sufficient optimality conditions for local strong quasi and approximate $LU$-efficient solutions to nonsmooth optimization problems with interval-valued multiobjective functions.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Vasile Preda

We consider an interval-valued multiobjective problem. Some necessary and sufficient optimality conditions for weak efficient solutions are established under new generalized convexities with the tool-right upper-Dini-derivative, which is an extension of directional derivative. Also some duality results are proved for Wolfe and Mond-Weir duals.


1998 ◽  
Vol 34 (5) ◽  
pp. 745-765 ◽  
Author(s):  
Gue Myung Lee ◽  
Do Sang Kim ◽  
Byung Soo Lee ◽  
Nguyen Dong Yen

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Renying Zeng

Abstract In this paper, we introduce some definitions of generalized affine set-valued maps: affinelike, preaffinelike, nearaffinelike, and prenearaffinelike maps. We present examples to explain that our definitions of generalized affine maps are different from each other. We derive a theorem of alternative of Farkas–Minkowski type, discuss Lagrangian multipliers for constrained set-valued optimization problems, and obtain some optimality conditions for weakly efficient solutions.


Sign in / Sign up

Export Citation Format

Share Document