nonsmooth vector optimization
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

2020 ◽  
Vol 9 (2) ◽  
pp. 383-398
Author(s):  
Sunila Sharma ◽  
Priyanka Yadav

Recently, Suneja et al. [26] introduced new classes of second-order cone-(η; ξ)-convex functions along with theirgeneralizations and used them to prove second-order Karush–Kuhn–Tucker (KKT) type optimality conditions and duality results for the vector optimization problem involving first-order differentiable and second-order directionally differentiable functions. In this paper, we move one step ahead and study a nonsmooth vector optimization problem wherein the functions involved are first and second-order directionally differentiable. We introduce new classes of nonsmooth second-order cone-semipseudoconvex and nonsmooth second-order cone-semiquasiconvex functions in terms of second-order directional derivatives. Second-order KKT type sufficient optimality conditions and duality results for the same problem are proved using these functions.


Author(s):  
Dr. Sunila Sharma ◽  
Priyanka Yadav

For a convex programming problem, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for optimality under suitable constraint qualification. Recently, Suneja et al proved KKT optimality conditions for a differentiable vector optimization problem over cones in which they replaced the cone-convexity of constraint function by convexity of feasible set and assumed the objective function to be cone-pseudoconvex. In this paper, we have considered a nonsmooth vector optimization problem over cones and proved KKT type sufficient optimality conditions by replacing convexity of feasible set with the weaker condition considered by Ho and assuming the objective function to be generalized nonsmooth cone-pseudoconvex. Also, a Mond-Weir type dual is formulated and various duality results are established in the modified setting.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Tadeusz Antczak ◽  
Najeeb Abdulaleem

Abstract A new class of (not necessarily differentiable) multiobjective fractional programming problems with E-differentiable functions is considered. The so-called parametric E-Karush–Kuhn–Tucker necessary optimality conditions and, under E-convexity hypotheses, sufficient E-optimality conditions are established for such nonsmooth vector optimization problems. Further, various duality models are formulated for the considered E-differentiable multiobjective fractional programming problems and several E-duality results are derived also under appropriate E-convexity hypotheses.


Sign in / Sign up

Export Citation Format

Share Document