scholarly journals Traffic Flows Analysis in High-Speed Computer Networks Using Time Series

Author(s):  
Ginno Millán

This article explores the required amount of time series points from a high-speed traffic network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series, followed by addressing the minimum amount of points required to obtain accurate estimates of the Hurst exponent in real-time. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behavior, standard deviation, mean square error, and convergence using fractional Gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed network based on the IEEE 802.3ab standard.

2021 ◽  
Author(s):  
Ginno Millán

This article explores the required amount of time series points from a high-speed traffic network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series, followed by addressing the minimum amount of points required to obtain accurate estimates of the Hurst exponent in real-time. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behavior, standard deviation, mean square error, and convergence using fractional gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed network based on the IEEE 802.3ab standard.


2021 ◽  
Author(s):  
Ginno Millan ◽  
manuel vargas ◽  
Guillermo Fuertes

This article explores the required amount of time series points from a high-speed traffic network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series, followed by addressing the minimum amount of points required to obtain accurate estimates of the Hurst exponent in real-time. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behavior, standard deviation, mean square error, and convergence using fractional gaussian noise signals with stationary increases.Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed network based on the IEEE 802.3ab standard.


2021 ◽  
Author(s):  
Ginno Millán

This article explores the required amount of time series points from a high-speed traffic network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series, followed by addressing the minimum amount of points required to obtain accurate estimates of the Hurst exponent in real-time. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behavior, standard deviation, mean square error, and convergence using fractional gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed network based on the IEEE 802.3ab standard.


2021 ◽  
Author(s):  
Ginno Millán ◽  
Román Osorio-Comparán ◽  
Gastón Lefranc

<div>This article explores the required amount of time series points from a high-speed computer network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series addresses resulting from the capture of high-speed network traffic, followed by addressing the minimum amount of point required to obtain in accurate estimates of the Hurst exponent. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behaviour, standard deviation, and Mean Squared Error using fractional Gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few</div><div>points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed computer network.</div>


2021 ◽  
Author(s):  
Ginno Millán

This article explores the required amount of time series points from a high-speed computer network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series addresses resulting from the capture of high-speed network traffic, followed by addressing the minimum amount of point required to obtain in accurate estimates of the Hurst exponent. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behaviour, standard deviation, and Mean Squared Error using fractional Gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed computer network.


2021 ◽  
Author(s):  
Ginno Millán

This article explores the required amount of time series points from a high-speed computer network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series addresses resulting from the capture of high-speed network traffic, followed by addressing the minimum amount of point required to obtain in accurate estimates of the Hurst exponent. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behaviour, standard deviation, and Mean Squared Error using fractional Gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed computer network.


2021 ◽  
Author(s):  
Ginno Millán ◽  
Román Osorio-Comparán ◽  
Gastón Lefranc

<div>This article explores the required amount of time series points from a high-speed computer network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series addresses resulting from the capture of high-speed network traffic, followed by addressing the minimum amount of point required to obtain in accurate estimates of the Hurst exponent. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behaviour, standard deviation, and Mean Squared Error using fractional Gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few</div><div>points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed computer network.</div>


2021 ◽  
Author(s):  
Ginno Millán

This article explores the required amount of time series points from a high-speed computer network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series addresses resulting from the capture of high-speed network traffic, followed by addressing the minimum amount of point required to obtain in accurate estimates of the Hurst exponent. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behaviour, standard deviation, and Mean Squared Error using fractional Gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed computer network.


2021 ◽  
Author(s):  
Ginno Millán

This article explores the required amount of time series points from a high-speed computer network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series addresses resulting from the capture of high-speed network traffic, followed by addressing the minimum amount of point required to obtain in accurate estimates of the Hurst exponent. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behaviour, standard deviation, and Mean Squared Error using fractional Gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed computer network.


2021 ◽  
Author(s):  
Ginno Millán Naveas

This article explores the required amount of time series points from a high-speed computer network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series addresses resulting from the capture of high-speed network traffic, followed by addressing the minimum amount of point required to obtain in accurate estimates of the Hurst exponent. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behaviour, standard deviation, and Mean Squared Error using fractional Gaussian noise signals with stationary increases.


Sign in / Sign up

Export Citation Format

Share Document