scholarly journals On the diffuse interface models for high codimension dispersed inclusions

2020 ◽  
pp. 1-34
Author(s):  
Elizaveta Vyacheslavovna Zipunova ◽  
Evgeny Borisovich Savenkov
Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2206
Author(s):  
Elizaveta Zipunova ◽  
Evgeny Savenkov

Diffuse interface models are widely used to describe the evolution of multi-phase systems of various natures. Dispersed inclusions described by these models are usually three-dimensional (3D) objects characterized by phase field distribution. When employed to describe elastic fracture evolution, the dispersed phase elements are effectively two-dimensional (2D) objects. An example of the model with effectively one-dimensional (1D) dispersed inclusions is a phase field model for electric breakdown in solids. Any diffuse interface field model is defined by an appropriate free energy functional, which depends on a phase field and its derivatives. In this work we show that codimension of the dispersed inclusions significantly restricts the functional dependency of the free energy on the derivatives of the problem state variables. It is shown that to describe codimension 2 diffuse objects, the free energy of the model necessarily depends on higher order derivatives of the phase field or needs an additional smoothness of the solution, i.e., its first derivatives should be integrable with a power greater than two. Numerical experiments are presented to support our theoretical discussion.


2012 ◽  
Vol 22 (03) ◽  
pp. 1150013 ◽  
Author(s):  
HELMUT ABELS ◽  
HARALD GARCKE ◽  
GÜNTHER GRÜN

A new diffuse interface model for a two-phase flow of two incompressible fluids with different densities is introduced using methods from rational continuum mechanics. The model fulfills local and global dissipation inequalities and is frame indifferent. Moreover, it is generalized to situations with a soluble species. Using the method of matched asymptotic expansions we derive various sharp interface models in the limit when the interfacial thickness tends to zero. Depending on the scaling of the mobility in the diffusion equation, we either derive classical sharp interface models or models where bulk or surface diffusion is possible in the limit. In the latter case a new term resulting from surface diffusion appears in the momentum balance at the interface. Finally, we show that all sharp interface models fulfill natural energy inequalities.


2013 ◽  
Vol 25 (9) ◽  
pp. 092111 ◽  
Author(s):  
David N. Sibley ◽  
Andreas Nold ◽  
Nikos Savva ◽  
Serafim Kalliadasis

Sign in / Sign up

Export Citation Format

Share Document