diffuse interface
Recently Published Documents


TOTAL DOCUMENTS

654
(FIVE YEARS 58)

H-INDEX

53
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Emma M. Schmidt ◽  
John M. Quinlan ◽  
Brian Bojko ◽  
Brandon Runnels


2022 ◽  
Vol 448 ◽  
pp. 110730
Author(s):  
Andreas D. Demou ◽  
Nicolò Scapin ◽  
Marica Pelanti ◽  
Luca Brandt




2021 ◽  
Vol 11 (24) ◽  
pp. 12107
Author(s):  
Shambhavi Nandan ◽  
Christophe Fochesato ◽  
Mathieu Peybernes ◽  
Renaud Motte ◽  
Florian De Vuyst

Compressible multi-materialflows are encountered in a wide range of natural phenomena and industrial applications, such as supernova explosions in space, high speed flows in jet and rocket propulsion, underwater explosions, and vapor explosions in post accidental situations in nuclear reactors. In the numerical simulations of these flows, interfaces play a crucial role. A poor numerical resolution of the interfaces could make it difficult to account for the physics, such as material separation, location of the shocks and contact discontinuities, and transfer of the mass, momentum and heat between different materials/phases. Owing to such importance, sharp interface capturing remains an active area of research in the field of computational physics. To address this problem in this paper we focus on the Interface Capturing (IC) strategy, and thus we make use of a newly developed Diffuse Interface Method (DIM) called Multidimensional Limiting Process-Upper Bound (MLP-UB). Our analysis shows that this method is easy to implement, can deal with any number of material interfaces, and produces sharp, shape-preserving interfaces, along with their accurate interaction with the shocks. Numerical experiments show good results even with the use of coarse meshes.



2021 ◽  
Author(s):  
Baburaj Kanagarajan ◽  
J. Matt Quinlan ◽  
Brandon Runnels

Solid composite propellants (SCPs) are ubiquitous in the field of propulsion. In order to design and control solid SCP rocket motors, it is critical to understand and accurately predict SCP regression. Regression of the burn surface is a complex process resulting from thermo-chemical-mechanical interactions, often exhibitingextreme morphological changes and topological transitions. Diffuse interface methods, such as phase field (PF), are well-suited for modeling processes of this type, and offer some distinct numerical advantages over their sharp-interface counterparts. In this work, we present a phase-field framework for modelingthe regression of SCPs with varying species and geometry. We construct the model from a thermodynamic perspective, leaving the base formulation general. A diffuse-species-interface field is employed as a mechanism for capturing complex burn chemistry in a reduced-order fashion, making it possible to model regressionfrom the solid phase only. The computational implementation, which uses block-structured adaptive mesh refinement and temporal substepping for increased performance, is briefly discussed. The model is then applied to four test cases: (i) pure AP monopropellant, (ii) AP/PBAN sandwich, (iii) AP/HTPB sandwich,and (iv) spherical AP particles packed in HTPB matrix. In all cases, reasonable quantitative agreement is observed, even when the model is applied predictively (i.e., no parameter adjustment), as in the case of (iv). The validation of the proposed PF model demonstrates its efficacy as a numerical design tool for future SCP investigation.





2021 ◽  
pp. 117463
Author(s):  
Marco Salvalaglio ◽  
David J. Srolovitz ◽  
Jian Han
Keyword(s):  




Sign in / Sign up

Export Citation Format

Share Document