scholarly journals Furniture Model Creation Through Direct Teaching to a Mobile Robot

2008 ◽  
Vol 20 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Kimitoshi Yamazaki ◽  
◽  
Takashi Tsubouchi ◽  
Masahiro Tomono ◽  
◽  
...  

In this paper, a modeling method to handle furniture is proposed. Real-life environments are crowded with objects such as drawers and cabinets that, while easily dealt with by people, present mobile robots with problems. While it is to be hoped that robots will assist in multiple daily tasks such as putting objects in into drawers, the major problems lies in providing robots with knowledge about the environment efficiently and, if possible, autonomously.If mobile robots can handle these furniture autonomously, it is expected that multiple daily jobs, for example, storing a small object in a drawer, can be performed by the robots. However, it is a perplexing process to give several pieces of knowledge about the furniture to the robots manually. In our approach, by utilizing sensor data from a camera and a laser range finder which are combined with direct teaching, a handling model can be created not only how to handle the furniture but also an appearance and 3D shape. Experimental results show the effectiveness of our methods.

2010 ◽  
Vol 22 (6) ◽  
pp. 708-717 ◽  
Author(s):  
Aneesh Chand ◽  
◽  
Shin‘ichi Yuta

Notably, a salient shortfall of most outdoor mobile robots is their lack of ability to autonomously cross roads while traveling along pedestrian sidewalks in an urban outdoor environment. If it has the ability to intuitively cross a road, the robot could then travel longer distances and more complex routes than originally possible. To this effect, the authors have been developing technologies that attempt to endow such a road-crossing function to outdoor mobile robots. In this paper, a system for road-crossing landmarks detection and localization for outdoor mobile robots is presented. We show how a robot equipped with a single monocular camera and laser range finder sensor can accurately detect, identify and localize roadcrossing landmarks such as pedestrian push button boxes, zebra crossings and pedestrian lights that the robots needs to be aware of and use in order to autonomously cross roads. In addition, experimental results and future plans are discussed.


2012 ◽  
Vol 190-191 ◽  
pp. 666-672 ◽  
Author(s):  
K.L. Su ◽  
J.H. Guo ◽  
C.W. Hung ◽  
Y.C. Song

The article develops an auto-charging system for mobile robots, and programs a new docking processing to enhance successful rate. The system contains a docking station and a mobile robot. The docking station contains a docking structure, a limit switch, a charger, two power detection modules and two wireless RF modules. The mobile robot contains a power detection module (voltage and current), an auto-switch, a wireless RF module, a charging connection structure and a laser range finder. The docking structure is designed with one active degree of freedom and two passive degrees of freedom. The power detection module is controlled by HOLTEK microchip. We calculate the power values using the redundant management method and statistical signal prediction method, and develop an auto-recharging processing using multiple sensors and laser range finder for mobile robots. The processing can enhances the successful rate to guide the mobile robot moving to the docking station. In the experimental results, the power of the mobile robot is under the threshold value. The mobile robot transmits the charging command to the docking station via wireless RF interface, and searches the landmark of the docking station using laser range finder (SICK). The laser range finder guides the mobile robot approach to the docking station. The mobile robot touches the docking station to trig the power detection device. The docking station supplies the power to the mobile robot by charger, and detects the current and voltage values of the charging processing. The charging current of the docking station is under the threshold value. The docking station turns off the charging current, and trigs the mobile robot leaving the docking station via wireless RF interface.


2014 ◽  
Vol 670-671 ◽  
pp. 1342-1345 ◽  
Author(s):  
Li Xian Wang ◽  
Rui Jun Yan ◽  
Long Sheng

This paper presents a method to track and follow target person. A laser range finder (LRF) is used to measure highly accurate distance of objects with the range of 180 degrees. First of all, the erroneous data are excluded due to the error of LRF. Then all the raw sensor data are separated into many groups when the difference of the measuring distances of two adjacent laser points are beyond a limited value. For each group, the width is calculated, and it is considered as human legs if the defined conditions are satisfied. Finally, a real-time human following experiment with a SICK LRF and PIONEER mobile robot is done to validate our proposed method.


2006 ◽  
Vol 24 (5) ◽  
pp. 605-613 ◽  
Author(s):  
Shinichi Okusako ◽  
Shigeyuki Sakane

2021 ◽  
Vol 33 (1) ◽  
pp. 33-43
Author(s):  
Kazuhiro Funato ◽  
Ryosuke Tasaki ◽  
Hiroto Sakurai ◽  
Kazuhiko Terashima ◽  
◽  
...  

The authors have been developing a mobile robot to assist doctors in hospitals in managing medical tools and patient electronic medical records. The robot tracks behind a mobile medical worker while maintaining a constant distance from the worker. However, it was difficult to detect objects in the sensor’s invisible region, called occlusion. In this study, we propose a sensor fusion method to estimate the position of a robot tracking target indirectly by an inertial measurement unit (IMU) in addition to the direct measurement by an laser range finder (LRF) and develop a human tracking system to avoid occlusion by a mobile robot. Based on this, we perform detailed experimental verification of tracking a specified person to verify the validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document