Design an Auto-Recharging System for Mobile Robots

2012 ◽  
Vol 190-191 ◽  
pp. 666-672 ◽  
Author(s):  
K.L. Su ◽  
J.H. Guo ◽  
C.W. Hung ◽  
Y.C. Song

The article develops an auto-charging system for mobile robots, and programs a new docking processing to enhance successful rate. The system contains a docking station and a mobile robot. The docking station contains a docking structure, a limit switch, a charger, two power detection modules and two wireless RF modules. The mobile robot contains a power detection module (voltage and current), an auto-switch, a wireless RF module, a charging connection structure and a laser range finder. The docking structure is designed with one active degree of freedom and two passive degrees of freedom. The power detection module is controlled by HOLTEK microchip. We calculate the power values using the redundant management method and statistical signal prediction method, and develop an auto-recharging processing using multiple sensors and laser range finder for mobile robots. The processing can enhances the successful rate to guide the mobile robot moving to the docking station. In the experimental results, the power of the mobile robot is under the threshold value. The mobile robot transmits the charging command to the docking station via wireless RF interface, and searches the landmark of the docking station using laser range finder (SICK). The laser range finder guides the mobile robot approach to the docking station. The mobile robot touches the docking station to trig the power detection device. The docking station supplies the power to the mobile robot by charger, and detects the current and voltage values of the charging processing. The charging current of the docking station is under the threshold value. The docking station turns off the charging current, and trigs the mobile robot leaving the docking station via wireless RF interface.

2008 ◽  
Vol 20 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Kimitoshi Yamazaki ◽  
◽  
Takashi Tsubouchi ◽  
Masahiro Tomono ◽  
◽  
...  

In this paper, a modeling method to handle furniture is proposed. Real-life environments are crowded with objects such as drawers and cabinets that, while easily dealt with by people, present mobile robots with problems. While it is to be hoped that robots will assist in multiple daily tasks such as putting objects in into drawers, the major problems lies in providing robots with knowledge about the environment efficiently and, if possible, autonomously.If mobile robots can handle these furniture autonomously, it is expected that multiple daily jobs, for example, storing a small object in a drawer, can be performed by the robots. However, it is a perplexing process to give several pieces of knowledge about the furniture to the robots manually. In our approach, by utilizing sensor data from a camera and a laser range finder which are combined with direct teaching, a handling model can be created not only how to handle the furniture but also an appearance and 3D shape. Experimental results show the effectiveness of our methods.


2006 ◽  
Vol 24 (5) ◽  
pp. 605-613 ◽  
Author(s):  
Shinichi Okusako ◽  
Shigeyuki Sakane

2021 ◽  
Vol 33 (1) ◽  
pp. 33-43
Author(s):  
Kazuhiro Funato ◽  
Ryosuke Tasaki ◽  
Hiroto Sakurai ◽  
Kazuhiko Terashima ◽  
◽  
...  

The authors have been developing a mobile robot to assist doctors in hospitals in managing medical tools and patient electronic medical records. The robot tracks behind a mobile medical worker while maintaining a constant distance from the worker. However, it was difficult to detect objects in the sensor’s invisible region, called occlusion. In this study, we propose a sensor fusion method to estimate the position of a robot tracking target indirectly by an inertial measurement unit (IMU) in addition to the direct measurement by an laser range finder (LRF) and develop a human tracking system to avoid occlusion by a mobile robot. Based on this, we perform detailed experimental verification of tracking a specified person to verify the validity of the proposed method.


2009 ◽  
Vol 14 (2) ◽  
pp. 257-261 ◽  
Author(s):  
Jr-Hung Guo ◽  
Kuo-Lan Su ◽  
Chia-Ju Wu ◽  
Sheng-Ven Shiau

Sign in / Sign up

Export Citation Format

Share Document