sensor data
Recently Published Documents


TOTAL DOCUMENTS

8449
(FIVE YEARS 4587)

H-INDEX

77
(FIVE YEARS 35)

Author(s):  
Asma Islam ◽  
Eshrat Jahan Esha ◽  
Sheikh Farhana Binte Ahmed ◽  
Md. Kafiul Islam

Motion artifacts contribute complexity in acquiring clean electroencephalography (EEG) data. It is one of the major challenges for ambulatory EEG. The performance of mobile health monitoring, neurological disorders diagnosis and surgeries can be significantly improved by reducing the motion artifacts. Although different papers have proposed various novel approaches for removing motion artifacts, the datasets used to validate those algorithms are questionable. In this paper, a unique EEG dataset was presented where ten different activities were performed. No such previous EEG recordings using EMOTIV EEG headset are available in research history that explicitly mentioned and considered a number of daily activities that induced motion artifacts in EEG recordings. Quantitative study shows that in comparison to correlation coefficient, the coherence analysis depicted a better similarity measure between motion artifacts and motion sensor data. Motion artifacts were characterized with very low frequency which overlapped with the Delta rhythm of the EEG. Also, a general wavelet transform based approach was presented to remove motion artifacts. Further experiment and analysis with more similarity metrics and longer recording duration for each activity is required to finalize the characteristics of motion artifacts and henceforth reliably identify and subsequently remove the motion artifacts in the contaminated EEG recordings.


2022 ◽  
Vol 22 (1) ◽  
pp. 1-18
Author(s):  
Alessio Pagani ◽  
Zhuangkun Wei ◽  
Ricardo Silva ◽  
Weisi Guo

Infrastructure monitoring is critical for safe operations and sustainability. Like many networked systems, water distribution networks (WDNs) exhibit both graph topological structure and complex embedded flow dynamics. The resulting networked cascade dynamics are difficult to predict without extensive sensor data. However, ubiquitous sensor monitoring in underground situations is expensive, and a key challenge is to infer the contaminant dynamics from partial sparse monitoring data. Existing approaches use multi-objective optimization to find the minimum set of essential monitoring points but lack performance guarantees and a theoretical framework. Here, we first develop a novel Graph Fourier Transform (GFT) operator to compress networked contamination dynamics to identify the essential principal data collection points with inference performance guarantees. As such, the GFT approach provides the theoretical sampling bound. We then achieve under-sampling performance by building auto-encoder (AE) neural networks (NN) to generalize the GFT sampling process and under-sample further from the initial sampling set, allowing a very small set of data points to largely reconstruct the contamination dynamics over real and artificial WDNs. Various sources of the contamination are tested, and we obtain high accuracy reconstruction using around 5%–10% of the network nodes for known contaminant sources, and 50%–75% for unknown source cases, which although larger than that of the schemes for contaminant detection and source identifications, is smaller than the current sampling schemes for contaminant data recovery. This general approach of compression and under-sampled recovery via NN can be applied to a wide range of networked infrastructures to enable efficient data sampling for digital twins.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-26
Author(s):  
Omid Hajihassani ◽  
Omid Ardakanian ◽  
Hamzeh Khazaei

The abundance of data collected by sensors in Internet of Things devices and the success of deep neural networks in uncovering hidden patterns in time series data have led to mounting privacy concerns. This is because private and sensitive information can be potentially learned from sensor data by applications that have access to this data. In this article, we aim to examine the tradeoff between utility and privacy loss by learning low-dimensional representations that are useful for data obfuscation. We propose deterministic and probabilistic transformations in the latent space of a variational autoencoder to synthesize time series data such that intrusive inferences are prevented while desired inferences can still be made with sufficient accuracy. In the deterministic case, we use a linear transformation to move the representation of input data in the latent space such that the reconstructed data is likely to have the same public attribute but a different private attribute than the original input data. In the probabilistic case, we apply the linear transformation to the latent representation of input data with some probability. We compare our technique with autoencoder-based anonymization techniques and additionally show that it can anonymize data in real time on resource-constrained edge devices.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-30
Author(s):  
Nisha Panwar ◽  
Shantanu Sharma ◽  
Guoxi Wang ◽  
Sharad Mehrotra ◽  
Nalini Venkatasubramanian ◽  
...  

Contemporary IoT environments, such as smart buildings, require end-users to trust data-capturing rules published by the systems. There are several reasons why such a trust is misplaced—IoT systems may violate the rules deliberately or IoT devices may transfer user data to a malicious third-party due to cyberattacks, leading to the loss of individuals’ privacy or service integrity. To address such concerns, we propose IoT Notary , a framework to ensure trust in IoT systems and applications. IoT Notary provides secure log sealing on live sensor data to produce a verifiable “proof-of-integrity,” based on which a verifier can attest that captured sensor data adhere to the published data-capturing rules. IoT Notary is an integral part of TIPPERS, a smart space system that has been deployed at the University of California, Irvine to provide various real-time location-based services on the campus. We present extensive experiments over real-time WiFi connectivity data to evaluate IoT Notary , and the results show that IoT Notary imposes nominal overheads. The secure logs only take 21% more storage, while users can verify their one day’s data in less than 2 s even using a resource-limited device.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-31
Author(s):  
Chaojie Gu ◽  
Linshan Jiang ◽  
Rui Tan ◽  
Mo Li ◽  
Jun Huang

Low-power wide-area network technologies such as long-range wide-area network (LoRaWAN) are promising for collecting low-rate monitoring data from geographically distributed sensors, in which timestamping the sensor data is a critical system function. This article considers a synchronization-free approach to timestamping LoRaWAN uplink data based on signal arrival time at the gateway, which well matches LoRaWAN’s one-hop star topology and releases bandwidth from transmitting timestamps and synchronizing end devices’ clocks at all times. However, we show that this approach is susceptible to a frame delay attack consisting of malicious frame collision and delayed replay. Real experiments show that the attack can affect the end devices in large areas up to about 50,000, m 2 . In a broader sense, the attack threatens any system functions requiring timely deliveries of LoRaWAN frames. To address this threat, we propose a LoRaTS gateway design that integrates a commodity LoRaWAN gateway and a low-power software-defined radio receiver to track the inherent frequency biases of the end devices. Based on an analytic model of LoRa’s chirp spread spectrum modulation, we develop signal processing algorithms to estimate the frequency biases with high accuracy beyond that achieved by LoRa’s default demodulation. The accurate frequency bias tracking capability enables the detection of the attack that introduces additional frequency biases. We also investigate and implement a more crafty attack that uses advanced radio apparatuses to eliminate the frequency biases. To address this crafty attack, we propose a pseudorandom interval hopping scheme to enhance our frequency bias tracking approach. Extensive experiments show the effectiveness of our approach in deployments with real affecting factors such as temperature variations.


Sensor Review ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gomathi V. ◽  
Kalaiselvi S. ◽  
Thamarai Selvi D

Purpose This work aims to develop a novel fuzzy associator rule-based fuzzified deep convolutional neural network (FDCNN) architecture for the classification of smartphone sensor-based human activity recognition. This work mainly focuses on fusing the λmax method for weight initialization, as a data normalization technique, to achieve high accuracy of classification. Design/methodology/approach The major contributions of this work are modeled as FDCNN architecture, which is initially fused with a fuzzy logic based data aggregator. This work significantly focuses on normalizing the University of California, Irvine data set’s statistical parameters before feeding that to convolutional neural network layers. This FDCNN model with λmax method is instrumental in ensuring the faster convergence with improved performance accuracy in sensor based human activity recognition. Impact analysis is carried out to validate the appropriateness of the results with hyper-parameter tuning on the proposed FDCNN model with λmax method. Findings The effectiveness of the proposed FDCNN model with λmax method was outperformed than state-of-the-art models and attained with overall accuracy of 97.89% with overall F1 score as 0.9795. Practical implications The proposed fuzzy associate rule layer (FAL) layer is responsible for feature association based on fuzzy rules and regulates the uncertainty in the sensor data because of signal inferences and noises. Also, the normalized data is subjectively grouped based on the FAL kernel structure weights assigned with the λmax method. Social implications Contributed a novel FDCNN architecture that can support those who are keen in advancing human activity recognition (HAR) recognition. Originality/value A novel FDCNN architecture is implemented with appropriate FAL kernel structures.


Author(s):  
Akey Sungheetha

Recently, various indoor based sensors that were formerly separated from the digital world, are now intertwined with it. The data visualization may aid in the comprehension of large amounts of information. Building on current server-based models, this study intends to display real environmental data acquired by IoT agents in the interior environment. Sensors attached to Arduino microcontrollers are used to collect environmental data for the smart campus environment, including air temperature, light intensity, and humidity. This proposed framework uses the system's server and stores sensor readings, which are subsequently shown in real time on the server platform and in the environment application. However, most current IoT installations do not make use of the enhanced digital representations of the server and its graphical display capabilities in order to improve interior safety and comfort conditions. The storage of such real-time data in a standard and organized way is still being examined even though sensor data integration with storing capacity server-based models has been studied in academics.


2022 ◽  
Vol 14 (2) ◽  
pp. 394
Author(s):  
Dan Li ◽  
Yuxin Miao ◽  
Curtis J. Ransom ◽  
G. Mac Bean ◽  
Newell R. Kitchen ◽  
...  

Accurate nitrogen (N) diagnosis early in the growing season across diverse soil, weather, and management conditions is challenging. Strategies using multi-source data are hypothesized to perform significantly better than approaches using crop sensing information alone. The objective of this study was to evaluate, across diverse environments, the potential for integrating genetic (e.g., comparative relative maturity and growing degree units to key developmental growth stages), environmental (e.g., soil and weather), and management (e.g., seeding rate, irrigation, previous crop, and preplant N rate) information with active canopy sensor data for improved corn N nutrition index (NNI) prediction using machine learning methods. Thirteen site-year corn (Zea mays L.) N rate experiments involving eight N treatments conducted in four US Midwest states in 2015 and 2016 were used for this study. A proximal RapidSCAN CS-45 active canopy sensor was used to collect corn canopy reflectance data around the V9 developmental growth stage. The utility of vegetation indices and ancillary data for predicting corn aboveground biomass, plant N concentration, plant N uptake, and NNI was evaluated using singular variable regression and machine learning methods. The results indicated that when the genetic, environmental, and management data were used together with the active canopy sensor data, corn N status indicators could be more reliably predicted either using support vector regression (R2 = 0.74–0.90 for prediction) or random forest regression models (R2 = 0.84–0.93 for prediction), as compared with using the best-performing single vegetation index or using a normalized difference vegetation index (NDVI) and normalized difference red edge (NDRE) together (R2 < 0.30). The N diagnostic accuracy based on the NNI was 87% using the data fusion approach with random forest regression (kappa statistic = 0.75), which was better than the result of a support vector regression model using the same inputs. The NDRE index was consistently ranked as the most important variable for predicting all the four corn N status indicators, followed by the preplant N rate. It is concluded that incorporating genetic, environmental, and management information with canopy sensing data can significantly improve in-season corn N status prediction and diagnosis across diverse soil and weather conditions.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0251059
Author(s):  
Pierre Schegg ◽  
Christian Duriez

In this review paper, we are interested in the models and algorithms that allow generic simulation and control of a soft robot. First, we start with a quick overview of modeling approaches for soft robots and available methods for calculating the mechanical compliance, and in particular numerical methods, like real-time Finite Element Method (FEM). We also show how these models can be updated based on sensor data. Then, we are interested in the problem of inverse kinematics, under constraints, with generic solutions without assumption on the robot shape, the type, the placement or the redundancy of the actuators, the material behavior… We are also interested by the use of these models and algorithms in case of contact with the environment. Moreover, we refer to dynamic control algorithms based on mechanical models, allowing for robust control of the positioning of the robot. For each of these aspects, this paper gives a quick overview of the existing methods and a focus on the use of FEM. Finally, we discuss the implementation and our contribution in the field for an open soft robotics research.


2022 ◽  
Vol 12 (2) ◽  
pp. 850
Author(s):  
Sungchul Lee ◽  
Eunmin Hwang ◽  
Yanghee Kim ◽  
Fatih Demir ◽  
Hyunhwa Lee ◽  
...  

With the prevalence of obesity in adolescents, and its long-term influence on their overall health, there is a large body of research exploring better ways to reduce the rate of obesity. A traditional way of maintaining an adequate body mass index (BMI), calculated by measuring the weight and height of an individual, is no longer enough, and we are in need of a better health care tool. Therefore, the current research proposes an easier method that offers instant and real-time feedback to the users from the data collected from the motion sensors of a smartphone. The study utilized the mHealth application to identify participants presenting the walking movements of the high BMI group. Using the feedforward deep learning models and convolutional neural network models, the study was able to distinguish the walking movements between nonobese and obese groups, at a rate of 90.5%. The research highlights the potential use of smartphones and suggests the mHealth application as a way to monitor individual health.


Sign in / Sign up

Export Citation Format

Share Document