scholarly journals An evaluation of soil phosphorus storage capacity (SPSC) at proposed wetland restoration locations in the western Lake Erie Basin

2021 ◽  
Author(s):  
Jacob Berkowitz ◽  
Christine VanZomeren ◽  
Nia Hurst ◽  
Kristina Sebastian

Historical loss of wetlands coupled with excess phosphorus (P) loading at watershed scales have degraded water quality in portions of the western Lake Erie Basin (WLEB). In response, efforts are underway to restore wetlands and decrease P loading to surface waters. Because wetlands have a finite capacity to retain P, researchers have developed techniques to determine whether wetlands function as P sources or sinks. The following technical report evaluates the soil P storage capacity (SPSC) at locations under consideration for wetland restoration in collaboration with the Great Lakes Restoration Initiative (GLRI) and the H2Ohio initiative. Results indicate that the examined soils display a range of P retention capacities, reflecting historic land-use patterns and management regimes. However, the majority of study locations exhibited some capacity to sequester additional P. The analysis supports development of rankings and comparative analyses of areas within a specific land parcel, informing management through design, avoidance, removal, or remediation of potential legacy P sources. Additionally, the approaches described herein support relative comparisons between multiple potential wetland development properties. These results, in conjunction with other data sources, can be used to target, prioritize, justify, and improve decision-making for wetland management activities in the WLEB.

1998 ◽  
Vol 32 (24) ◽  
pp. 3862-3867 ◽  
Author(s):  
Heather A. Morrison ◽  
Frank A. P. C. Gobas ◽  
Rodica Lazar ◽  
D. Michael Whittle ◽  
G. Douglas Haffner

1975 ◽  
Vol 32 (10) ◽  
pp. 1733-1743 ◽  
Author(s):  
Wolf-Dieter N. Busch ◽  
Russell L. Scholl ◽  
Wilbur L. Hartman

Commercial production of walleyes (Stizostedion vitreum vitreum) from western Lake Erie declined from 5.9 million pounds in 1956 to 140,000 pounds by 1969. Since 1956, marked irregularity in year-class success has developed. Only four year-classes were considered good during 1959–70. The rate and regularity of water warming during the spring spawning and incubation periods in 1960–70 had a positive effect on the density of egg deposits and the resulting year-class strength. Rates of warming were not themselves detrimental, but rather the extended length of the incubation period in cool springs increased the exposure of eggs to such negative influences as dislodgment from the spawning reefs by strong current action generated by spring storms, or siltation and low oxygen tensions. The annual brood stock size had much less influence on year-class strength than did water temperature. Reproductive success was unrelated to fluctuations in size of suitable reef spawning area caused by changes in water level. Apparently the usable spawning area at any water level is more than adequate to serve the limited walleye brood stocks.


2014 ◽  
Vol 38 (5) ◽  
pp. 1487-1495 ◽  
Author(s):  
Ciro Antonio Rosolem ◽  
Alexandre Merlin

Phosphorus fixation in tropical soils may decrease under no-till. In this case, P fertilizer could be surface-spread, which would improve farm operations by decreasing the time spend in reloading the planter with fertilizers. In the long term, less soluble P sources could be viable. In this experiment, the effect of surface-broadcast P fertilization with both soluble and reactive phosphates on soil P forms and availability to soybean was studied with or without fertilization with soluble P in the planting furrow in a long-term experiment in which soybean was grown in rotation with Ruzigrass (Brachiaria ruziziensis). No P or 80 kg ha-1 of P2O5 in the form of triple superphosphate or Arad reactive rock phosphate was applied on the surface of a soil with variable P fertilization history. Soil samples were taken to a depth of 60 cm and soil P was fractionated. Soybean was grown with 0, 30, and 60 kg ha-1 of P2O5 in the form of triple phosphate applied in the seed furrow. Both fertilizers applied increased available P in the uppermost soil layers and the moderately labile organic and inorganic forms of P in the soil profile, probably as result of root decay. Soybean responded to phosphates applied on the soil surface or in the seed furrow; however, application of soluble P in the seed furrow should not be discarded. In tropical soils with a history of P fertilization, soluble P sources may be substituted for natural reactive phosphates broadcast on the surface. The planting operation may be facilitated through reduction in the rate of P applied in the planting furrow in relation to the rates currently applied.


2013 ◽  
Vol 39 (3) ◽  
pp. 449-454 ◽  
Author(s):  
Nick J. Bryan ◽  
Christina V. Florence ◽  
Todd D. Crail ◽  
Daryl L. Moorhead

2013 ◽  
Vol 39 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Thomas B. Bridgeman ◽  
Justin D. Chaffin ◽  
Jesse E. Filbrun

2019 ◽  
Vol 53 (13) ◽  
pp. 7543-7550 ◽  
Author(s):  
Margaret M. Kalcic ◽  
Rebecca Logsdon Muenich ◽  
Samantha Basile ◽  
Allison L. Steiner ◽  
Christine Kirchhoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document