p fertilization
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 69)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 1 ◽  
Author(s):  
Shinya Iwasaki ◽  
Kenta Ikazaki ◽  
Ameri Bougma ◽  
Fujio Nagumo

Development of local P fertilizers using low-grade phosphate rock (PR) is expected to overcome the low-stagnated crop yield in Sub-Saharan Africa. Calcination and partial acidulation methods have been proposed to increase the phosphate (P) solubility of PRs. However, the effects of fertilization with calcinated PR (CPR) and partially acidulated PR (PAPR) on sorghum [Sorghum bicolor (L.)] and cowpea [Vigna unguiculata (L.) Walp.] cultivation are poorly understood. Therefore, we conducted a 2-year field experiment in Burkina Faso to identify the differences in sorghum and cowpea responses to CPR and PAPR application. The following eight treatments were applied with six replicates using a complete randomized block design: control without P fertilization, two types of CP (CPs), triple superphosphate (TSP) as a positive control for CPs, three types of PAPR with different degrees of acidulation (PAPRs), and single superphosphate (SSP) as a positive control for PAPRs. SSP mostly comprised of water-soluble P fraction (WP), TSP and PAPRs of WP and alkaline ammonium citrate-soluble P fraction (SP), and CPRs of SP and 2% citric acid-soluble P fraction (CP). Their solubility was in the order WP > SP > CP. The fertilization effects were evaluated by P use efficiency (PUE). In 2019, the biomass and P uptake of sorghum was decreased by the low available soil water at the early growth stage. On the contrary, cowpea survived the low available soil water because of its shorter growing period compared to sorghum. P fertilization significantly increased the grain yields. However, the effect size differed according to the crop and fertilizer types. The SP, along with WP, significantly contributed to the PUE and grain yield of sorghum, whereas only WP contributed to the PUE of cowpea. Therefore, CPs, mainly consisting of SP and CP, had a disadvantage compared to TSP, especially for cowpea. We thus concluded that PAPRs are effective for sorghum and would be effective for cowpea when the acidulation level is sufficiently high. We also conclude that the long growing period of sorghum is favorable for absorbing slow-release P, but is unfavorable for the variable rainfall often observed in this region.


2022 ◽  
Vol 11 (1) ◽  
pp. 25-32
Author(s):  
Gulzhan ZHAKSYBAYEVA ◽  
Alimbay BALGABAYEV ◽  
Tursunay VASSİLİNA ◽  
Aigerim SHİBİKEYEVA ◽  
Almagul MALİMBAYEVA

2022 ◽  
Vol 79 (5) ◽  
Author(s):  
Marco Esteban Gudiño–Gomezjurado ◽  
Rafael de Almeida Leite ◽  
Teotonio Soares de Carvalho ◽  
Ludwig Heinrich Pfenning ◽  
Fatima Maria de Souza Moreira

2021 ◽  
Vol 12 ◽  
Author(s):  
Stephan Unger ◽  
Franziska M. Habermann ◽  
Katarina Schenke ◽  
Marjan Jongen

Arbuscular mycorrhizal fungi (AMF) may affect competitive plant interactions, which are considered a prevalent force in shaping plant communities. Aiming at understanding the role of AMF in the competition between two pasture species and its dependence on soil nutritional status, a pot experiment with mycorrhizal and non-mycorrhizal Lolium multiflorum and Trifolium subterraneum was conducted, with manipulation of species composition (five levels), and nitrogen (N)- and phosphorus (P)- fertilization (three levels). In the non-mycorrhizal state, interspecific competition did not play a major role. However, in the presence of AMF, Lolium was the strongest competitor, with this species being facilitated by Trifolium. While N-fertilization did not change the competitive balance, P-fertilization gave Lolium, a competitive advantage over Trifolium. The effect of AMF on the competitive outcome may be driven by differential C-P trade benefits, with Lolium modulating carbon investment in the mycorrhizal network and the arbuscule/vesicle ratio at the cost of Trifolium.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rana Roy ◽  
M. Golam Mahboob ◽  
Carmen Arena ◽  
Md. Abdul Kader ◽  
Shirin Sultana ◽  
...  

Surface mining is a critical anthropogenic activity that significantly alters the ecosystem. Revegetation practices are largely utilized to compensate for these detrimental impacts of surface mining. In this study, we investigated the effects of five water (W) regimes [W40: 40%, W48: 48%, W60: 60%, W72: 72%, and W80: 80% of field capacity (FC)], five nitrogen (N) (N0: 0, N24: 24, N60: 60, N96: 96, and N120: 120 mg kg−1 soil), and five phosphorus (P) fertilizer doses (P0: 0, P36: 36, P90: 90, P144: 144, and P180: 180 mg kg−1 soil) on morpho-physiological and biochemical parameters of Ammopiptanthus mongolicus plants to assess the capability of this species to be used for restoration purposes. The results showed that under low W-N resources, A. mongolicus exhibited poor growth performance (i.e., reduced plant height, stem diameter, and dry biomass) in coal-degraded spoils, indicating that A. mongolicus exhibited successful adaptive mechanisms by reducing its biomass production to survive long in environmental stress conditions. Compared with control, moderate to high W and N-P application rates greatly enhanced the net photosynthesis rates, transpiration rates, water-use efficiency, chlorophyll (Chl) a, Chl b, total Chl, and carotenoid contents. Under low-W content, the N-P fertilization enhanced the contents of proline and soluble sugar, as well as the activities of superoxide dismutase, catalase, and peroxidase in leaf tissues, reducing the oxidative stress. Changes in plant growth and metabolism in W-shortage conditions supplied with N-P fertilization may be an adaptive strategy that is essential for its conservation and restoration in the desert ecosystem. The best growth performance was observed in plants under W supplements corresponding to 70% of FC and N and P doses of 33 and 36 mg kg−1 soil, respectively. Our results provide useful information for revegetation and ecological restoration in coal-degraded and arid-degraded lands in the world using endangered species A. mongolicus.


Geoderma ◽  
2021 ◽  
Vol 404 ◽  
pp. 115274
Author(s):  
Shuo Chen ◽  
Barbara J. Cade-Menun ◽  
Luke D. Bainard ◽  
Mervin St. Luce ◽  
Yongfeng Hu ◽  
...  

2021 ◽  
Vol 132 ◽  
pp. 108306
Author(s):  
Zhihui Wang ◽  
Zhirui Wang ◽  
Tianpeng Li ◽  
Cong Wang ◽  
Ning Dang ◽  
...  

EDIS ◽  
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Gustavo Kreutz ◽  
Jehangir Bhadha ◽  
Guodong Liu ◽  
Marcio Resende ◽  
Alan Wright ◽  
...  

The global demand for P fertilizers has been significantly increasing, resulting in higher costs and environmental concerns associated with eutrophication. Fertilizer expenses and environmental risks can be reduced through the implementation of sustainable strategies. This new 6-page publication of the UF/IFAS Horticultural Sciences Department compiles several strategies to improve the utilization of P fertilization in lettuce grown in the Everglades Agricultural Area.https://edis.ifas.ufl.edu/hs1423


Author(s):  
Jim J. Miller ◽  
Mallory Owen ◽  
Ben Ellert ◽  
Xueming Yang ◽  
Craig F. Drury ◽  
...  

Soil water repellency (SWR) was measured for a 28 yr field study under irrigation on a clay loam Dark Brown soil in southern Alberta. The objectives were to study the effect of legume-cereal crop rotations, feedlot manure, and phosphorus (P) fertilizer application on soil hydrophobicity (SH) and soil water repellency index (RI) under irrigation. Mean SH and RI were similar (P > 0.05) for a legume-cereal and cereal rotation, and were unaffected by P fertilization. However, P fertilization shifted the RI classification from slight to sub-critical. In contrast, SH was significantly greater for manured than non-manured treatments, while RI was unaffected. Soil organic carbon (SOC) concentration was significantly (P ≤ 0.05) correlated with SH (r=0.74), but not with RI (r=-0.17). This suggested a closer association between the quantity of SOC and quantity of hydrophobic compounds (SH method) compared to the hydrophobic coatings inhibiting infiltration of water (RI method). No significant correlation between SH and RI (r=-0.09) suggests that SH is not a good predictor of SWR using the RI method. Overall, manure application increased SH and P fertilization shifted the RI classification from slight to sub-critical. In contrast, legume-cereal rotations had no influence on SH and SWR using RI method compared to continuous cereal.


Sign in / Sign up

Export Citation Format

Share Document