scholarly journals MIDDLE EAST GEOLOGIC TIME SCALE 2010: Early Cambrian Asfar Sequence

GeoArabia ◽  
2010 ◽  
Vol 15 (1) ◽  
pp. 137-160 ◽  
Author(s):  
Moujahed I. Al-Husseini

ABSTRACT This paper is the first in a series dedicated to the Phanerozoic Cambrian Period, and Neoproterozoic Ediacaran and Cryogenian periods, as represented in the Middle East Geologic Time Scale (ME GTS, see enclosed Chart). It introduces the term Asfar Sequence to represent a regional Early Cambrian time-rock unit, consisting mainly of continental quartz-rich arkosic sandstone, shale and siltstone, which attain a thickness of at least 750 m in Jordan and more than 700 m in Oman. The term “Asfar”, meaning yellow in Arabic, was chosen because it is the standard color for sandstone in ME GTS. To describe its stratigraphy, four representative formations are reviewed in lexicon format: Salib Arkosic Sandstone of Jordan, Siq Sandstone of Saudi Arabia, Amin Formation of Oman and Lalun Sandstone of Iran. The stratigraphic geometry of the lower boundary of the Sequence varies considerably by locality. In some regions in Iran it is conformable above the shales of the Zaigun Formation. In other regions, such as western Jordan, it is an onlap surface over Proterozoic and/or Lower and Middle Cambrian paleohighs, or a pronounced angular unconformity (e.g. central and southern Saudi Arabia). The paleo-relief represented by the unconformity surface, in many regions, forms a regional peneplain (e.g. central and eastern Jordan) implying erosion; in other paleohigh regions, the Sequence is absent by non-deposition. The age of the base Asfar Sequence is estimated at ca. 530 Ma, based on radiometric data and depositional rates in basinal areas. The top boundary of the Sequence, in Iran, Jordan, and northern and northeastern Saudi Arabia, is represented by a sequence boundary (or its correlative unconformity), above which marine, fine-grained siliciclastics and carbonates of late Early to early Mid-Cambrian age were deposited: Mila Formation in Iran, and Burj Formation in Jordan and Saudi Arabia, implying an age older than ca. 510 Ma in GTS 2004. In Oman, however, continental rather than marine deposition (Miqrat and coeval Mahwis formations) continued above the unconformity in ?Middle Cambrian. For the purpose of regional correlations it is proposed that the Angudan Unconformity of Oman be taken as the name for the basal boundary of the Sequence and the Burj Sequence Boundary for its top.

GeoArabia ◽  
2009 ◽  
Vol 14 (2) ◽  
pp. 145-186 ◽  
Author(s):  
Moujahed Al-Husseini

ABSTRACT This Note presents a formal update to the Middle East Geologic Time Scale 2008 (ME GTS) for the Late Triassic and Jurassic rock units of Saudi Arabia. It reviews their lithostratigraphic nomenclature, ranks and stage assignments, and proposes names for third-order chrono-sequences as compiled and/or interpreted from the published literature. The review starts with the Late Triassic (Late Norian – Rhaetian) Minjur Sandstone of the Buraydah Group, with the Triassic – Jurassic (TrJ) boundary positioned at its top. The Minjur Sandstone consists of two units, here ranked as members, which are interpreted as the Late Norian – ?Early Rhaetian Lower Minjur Sequence (Lower Minjur Member) and ?Late Norian – Rhaetian Upper Minjur Sequence (Upper Minjur Member). The Early Jurassic Unconformity - Hiatus (Hettangian, Sinemurian and Pliensbachian stages) separates the Minjur Sandstone from the Toarcian Marrat Formation of the Jurassic Shaqra’ Group. The Shaqra’ Group consists of seven formations, from base-up: (1) Marrat Formation consisting of the Lower, Middle and Upper units, here ranked as members. (2) Dhruma Formation consisting of eight units (D1–D5, Wadi ad Dawasir “delta”, D6 and D7). The Dhruma units have been named in the literature as Balum Member (D1 and lower part of D2 units), Dhibi Limestone Member (upper part of D2 unit), Uwaynid Member (D3), Barrah Member (D4), Mishraq Member (D5), ‘Atash and Hisyan members (D7); the D6 and Wadi ad Dawasir “delta” units are not formally named as members. (3) Tuwaiq Mountain Limestone consisting of the Baladiyah (T1 unit), Mysiyah (T2 unit) and Daddiyah (T3 unit) members. (4) Hanifa Formation consisting of the Hawtah and Ulayyah members. (5) Jubaila Limestone with J1 and J2 units. (6) Arab Formation consisting of D to A members. (7) Hith Anhydrite consisting of Main Hith Anhydrite Member and Manifa Reservoir/Member. The seven formations of the Jurassic Shaqra’ Group are interpreted as 11 third-order chrono-sequences: (1) Early Toarcian Marrat Sequence B (Lower and Middle Marrat members) and Mid- to ?Late Toarcian Marrat Sequence A (Upper Marrat Member), the latter containing Arabian Plate maximum flooding surface MFS J10. (2) Bajocian Lower Dhruma Sequence (Balum Member and Dhibi Limestone), formed by the Balum and Dhibi subsequences, the former containing MFS J20. (3) Late Bajocian – Mid-Bathonian Dhruma Sequence B (Uwaynid, Barrah, Mishraq members, and Wadi ad Dawasir “delta” unit), with the Mishraq containing MFS J30. (4) Late Bathonian – early Mid-Callovian Dhruma Sequence A (unit D6, ‘Atash and Hisyan members), with the Hisyan containing MFS J40. (5) Mid- to Late Callovian Tuwaiq Sequence (Tuwaiq Mountain Limestone) containing an undesignated MFS at the base the Daddiyah Member (T3 unit). (6) Early and Mid-Oxfordian Hawtah Sequence (Hawtah Member of Hanifa Formation) containing MFS J50. (7) Late Oxfordian – ?Early Kimmeridgian Ulayyah Sequence (Ulayyah Member of Hanifa Formation) containing MFS J60. (8) Kimmeridgian Jubaila Sequence (Jubaila Limestone) containing MFS J70. (9) Arab-D Sequence (Arab-D Member inclusive of the Arab-D Anhydrite) containing an undesignated MFS in the Arab-D carbonate. (10) ?Kimmeridgian – ?Tithonian Arab-C and B Sequence (Arab C and B members) containing fourth-order MFS J80 and J90 in the lower carbonates of the members; and (11) ?Kimmeridgian – Tithonian Arab-A - Main Hith Sequence (Arab-A Member and Main Hith Anhydrite below the Manifa Reservoir/Member) containing fourth-order MFS J100 in the Arab-A Member. The Tithonian Manifa Member (upper part of the Hith Anhydrite Formation) is interpreted as heralding a transgression (fourth-order MFS J110), which deposited the Late Jurassic – Early Cretaceous Sulaiy Formation of the Thamama Group. The Jurassic – Cretaceous (JK) boundary is placed in the Sulaiy Formation by stratigraphic position. Based on the Geologic Time Scale GTS 2004 and Arabian Orbital Stratigraphy (AROS), the ages in million years before present of the sequence boundaries and maximum flooding surfaces are estimated for these chrono-sequences.


1991 ◽  
Vol 99 (5) ◽  
pp. 786-786
Author(s):  
John J. Flynn

2013 ◽  
pp. 476-476
Author(s):  
Frank D. Stacey ◽  
Paul M. Davis

2014 ◽  
Vol 54 (2) ◽  
pp. 473
Author(s):  
Tegan Smith ◽  
John Laurie ◽  
Lisa Hall ◽  
Robert Nicoll ◽  
Andrew Kelman ◽  
...  

The international Geologic Time Scale (GTS) continually evolves due to refinements in age dating and the addition of more defined stages. The GTS 2012 has replaced GTS 2004 as the global standard timescale, resulting in changes to the age and duration of most chronological stages. These revisions have implications for interpreted ages and durations of sedimentary rocks in Australian basins, with ramifications for petroleum systems modelling. Accurate stratigraphic ages are required to reliably model the burial history of a basin, hence kerogen maturation and hydrocarbon expulsion and migration. When the resolution of the time scale is increased, models that utilise updated ages will better reflect the true basin history. The international GTS is largely built around northern hemisphere datasets. At APPEA 2009, Laurie et al. announced a program to tie Australian biozones to GTS 2004. Now, with the implementation of GTS 2012, these ties are being updated and refined, requiring a comprehensive review of the correlations between Australian and International biozonation schemes. The use of Geoscience Australia’s Timescales Database and a customised ‘Australian Datapack’ for the visualisation software package TimeScale Creator has greatly facilitated the transition from GTS 2004 to GTS 2012, as anticipated in the design of the program in 2009. Geoscience Australia’s basin biozonation and stratigraphy charts (e.g. Northern Carnarvon and Browse basins) are being reproduced to reflect the GTS 2012 and modified stratigraphic ages. Additionally, new charts are being added to the series, including a set of onshore basin charts, such as the Georgina and Canning basins.


2008 ◽  
Vol 43 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Felix M. Gradstein ◽  
James G. Ogg ◽  
Martin van Kranendonk

Sign in / Sign up

Export Citation Format

Share Document