GeoArabia
Latest Publications


TOTAL DOCUMENTS

413
(FIVE YEARS 0)

H-INDEX

15
(FIVE YEARS 0)

Published By Geoscienceworld

1025-6059

GeoArabia ◽  
2015 ◽  
Vol 20 (4) ◽  
pp. 125-180
Author(s):  
Adi P. Kadar ◽  
Thomas De Keyser ◽  
Nilotpaul Neog ◽  
Khalaf A. Karam

ABSTRACT This paper presents the calcareous nannofossil zonation of the Middle and Upper Jurassic of onshore Kuwait and formalizes current stratigraphic nomenclature. It also interprets the positions of the Jurassic Arabian Plate maximum flooding surfaces (MFS J10 to J110 of Sharland et al., 2001) and sequence boundaries in Kuwait, and correlates them to those in central Saudi Arabia outcrops. This study integrates data from about 400 core samples from 11 wells representing a nearly complete Middle to Upper Jurassic stratigraphic succession. Forty-two nannofossil species were identified using optical microscope techniques. The assemblage contains Tethyan nannofossil markers, which allow application of the Jurassic Tethyan nannofossil biozones. Six zones and five subzones, ranging in age from Middle Aalenian to Kimmeridgian, are established using first and last occurrence events of diagnostic calcareous nannofossil species. A chronostratigraphy of the studied formations is presented, using the revised formal stratigraphic nomenclature. The Marrat Formation is barren of nannofossils. Based on previous studies it is dated as Late Sinemurian–Early Aalenian and contains Middle Toarcian MFS J10. The overlying Dhruma Formation is Middle or Late Aalenian (Zone NJT 8c) or older, to Late Bajocian (Subzone NJT 10a), and contains Lower Bajocian MFS J20. The overlying Sargelu Formation consists of the Late Bajocian (Subzone NJT 10b) Sargelu-Dhruma Transition, and mostly barren Sargelu Limestone in which we place Lower Bathonian MFS J30 near its base. The lower part of the overlying Najmah Formation consists of the Najmah Shale, which is subdivided into three subunits: (1) barren Najmah-Sargelu Transition, (2) Late Bathonian to Middle Callovian (lower Zone NJT 12) Lower Najmah Shale, and (3) Middle Callovian to Middle Oxfordian (upper Zone NJT 12 to NJT 13b) Upper Najmah Shale. Middle Callovian MFS J40 and Middle Oxfordian MFS J50 are positioned near the base and top of the Upper Najmah Shale. The upper part of the Najmah Formation is represented by the Late Oxfordian (Subzone NJT 13b) Najmah Limestone, and is overlain by the Kimmeridgian (Zone NJT 14) Jubaila Formation. Early Kimmeridgian MFS J60 and Late Kimmeridgian MFS J70 are positioned near the base and top of the Jubaila Formation. The positions of Late Jurassic MFS J80, J90 and J100 are not constrained by our biostratigraphic data and are positioned in the Gotnia Formation. The Upper Tithonian MFS J110 and the Jurassic/Cretaceous boundary are positioned in the Makhul Formation.


GeoArabia ◽  
2015 ◽  
Vol 20 (4) ◽  
pp. 67-122
Author(s):  
Philipp Wolpert ◽  
Martin Bartenbach ◽  
Peter Suess ◽  
Randolf Rausch ◽  
Thomas Aigner ◽  
...  

ABSTRACT Uppermost Jurassic–Lower Cretaceous carbonates of the Sulaiy Formation are well exposed at the type locality Dahal Hit, and along the entire natural escarpment near Ar Riyad, the capital of the Kingdom of Saudi Arabia. This study provides a facies and sequence-stratigraphic analysis based on detailed sedimentological and gamma-ray logging of 12 outcrop sections. The sections represent the Sulaiy Formation along a 60 km-long outcrop belt, including the Hith-Sulaiy transition in a large solution cavity named Dahal Hit, situated south of Ar Riyad. The latter section is studied in detail because it is the only locality in Saudi Arabia where the Hith Anhyrite (Hith Formation in this study) to the Sulaiy Formation transition crops out. Ten lithofacies types were identified for the Sulaiy Formation including potential reservoirs such as oolitic cross-bedded grainstones, biostromal boundstones, and bioclast-rich, graded pack-to-grainstones. Lithofacies types are grouped into five facies associations: (1) offshoal, (2) transition zone, foreshoal, (4) shoal margin, and (5) shoal, distributed along a carbonate ramp. Their vertical stacking pattern revealed a systematic hierarchy of cyclicity consisting of small-scale cycles, medium-scale cycle sets and two large-scale sequences for the Sulaiy Formation. Four cycle motifs, with an average thickness of 2–4 m, are present: (1) offshoal to transition zone cycle motif, (2) offshoal to foreshoal cycle motif, (3) transition zone to shoal margin cycle motif, and foreshoal to shoal margin cycle motif. A total of 15 cycle sets, ranging between 8 and 12 m in thickness each, were interpreted. They were correlated, where possible, across the study area. Three types of medium-scale cycle sets are observed: (1) offshoal to shoal cycle set motif, (2) offshoal to foreshoal cycle set motif, and (3) shoal margin to offshoal cycle set motif. The Lower Sulaiy Sequence consists of twelve cycle sets and is interpreted to contain two Arabian Plate maximum flooding surfaces (MFS): (1) Upper Tithonian MFS J110 (147 Ma) in its lowermost part, which is interpreted to be the time-equivalent of the Manifa reservoir in subsurface Arabia. (2) Lower Berriasian MFS K10 (144 Ma) in the seventh-up cycle set. The Upper Sulaiy Sequence is only represented in the Wadi Nisah Section and is believed to be incomplete because the Sulaiy/Yamama Formation boundary was not included in our study. It is presumed to contain Upper Berriasian MFS K20 (141 Ma).


GeoArabia ◽  
2015 ◽  
Vol 20 (4) ◽  
pp. 183-216
Author(s):  
Moujahed I. Al-Husseini

ABSTRACT ‘Arabian Orbital Stratigraphy’ (AROS) is an R&D program aimed at dating Arabia’s transgressive-regressive (T-R) depositional sequences using the ‘Orbital Scale’ of Matthews and Al-Husseini (2010). The scale consists of time-rock units named ‘orbitons’, ‘dozons’ and ‘stratons’ that are tuned by orbital-forcing of glacio-eustasy. Orbitons have durations of 14.58 million years (Myr), and are bounded by regional sequence boundaries (SB, hiatus, unconformity, disconformity, lowstand deposits). Orbiton 1 was deposited between SB 1 at 16.166 million years before present (Ma) and SB 0 (zero) at 1.586 Ma. The interval between SB 0 and the Precambrian/Cambrian Boundary (PCB) consists of 37 orbitons; at least 30 can be identified in Arabia based on published data. SB 37 is predicted at 541.046 Ma (1.586 + 37 × 14.58 Myr), and correlates to the PCB, calibrated in Oman at 541.0 Ma. An orbiton consists of 36 stratons. Stratons are T-R sequences that tracked the long-eccentricity orbital cycle (E-cycle). The age of base Straton 1 is 0.371 Ma. Their durations can range between about 300 thousand years (Kyr) and 550 Kyr, but average 405 Kyr over several million years. The Phanerozoic Era consists of 1,336 stratons that are typically referred to as 4th-order sequences or cycle sets. Approximately 200 stratons are identified in this paper, and tentatively dated in the Orbital Scale. An orbiton also consists of three dozons, which are generally bounded by regional SBs. Dozons typically consist of 12 stratons (4.86 Myr). Examples of dozons are illustrated in this paper for the Permian–Triassic in Arabia. AROS predicts ages for Arabian and global T-R sequences that are deterministic, and they may be more accurate than those estimated by the Geological Time Scale GTS 2015. The paper proposes that the global T-R sequences should be recast in terms of stratons (E-cycles), and that stratons be used to calibrate biostratigraphy, magneto-stratigraphy and other global stratigraphic markers in future GTSs.


GeoArabia ◽  
2015 ◽  
Vol 20 (4) ◽  
pp. 41-62
Author(s):  
Ralph Hinsch ◽  
Bernhard Bretis

ABSTRACT The Mountain Front Flexure or Fault (MFF) of the Zagros Mountains separates the foreland or foothills area from the morphological apparent mountain belt. Across this feature the regional elevations of Mesozoic to Neogene stratigraphic horizons substantially rise towards the mountain belt. Thin-skinned and thick-skinned structural styles have been proposed for this rise in other parts of the Zagros region. In our study area, in the Kurdistan Region of Iraq (KRI), we integrated surface and subsurface data and constructed a (semi-) balanced cross-section across the MFF. The section features duplex structures in the deeper subsurface, related to a deeper Palaeozoic and a shallower Triassic decollement horizon. On a smaller scale, layer-parallel shortening and intense deformation is observed in the incompetent lithologies, leading to an incipient disharmonic folding. Restoration of the section reveals a distinct imbalance between shortening in the upper part of the stratigraphic section (approximately 4 km or 16% on top Jurassic level) to the lower part (approximately 20 km or 49% on top Permian level). The imbalance can only be equalised on a regional section if the shortening is transferred from the lower to the higher decollement levels, which is connected to folds and thrusts in the foothills area. Based on observations from the mechanical stratigraphy, geometric relationships in map and cross-section, as well as morphological considerations, we argue that the origin of the MFF in the area of the considered section is related to active roof duplexes rather than basement-involved thrusting.


GeoArabia ◽  
2015 ◽  
Vol 20 (4) ◽  
pp. 17-36
Author(s):  
Agoston Sasvari ◽  
Laura Davies ◽  
Andrew Mann ◽  
Jawad Afzal ◽  
Gabor Vakarcs ◽  
...  

ABSTRACT A field survey was carried out in 2012 focusing on the tectonic position and the role of Upper Triassic (Upper Norian–Rhaetian) Avroman Formation outcrops located in the Zalm area of Iraq, close to the Iraq-Iran border. At this location, the Cretaceous chert-bearing strata of the Qulqula Formation are overlain by sheared mafic bodies, which are in turn topped by the cliffs of the megalodontaceae-bearing Upper Triassic Avroman Formation. Similarities in lithology, sequence and tectonics position, suggest that the Triassic section of the Bisotoun Unit from the Kermanshah Zone of Iran can be used as a tectonic analogue of the Avroman Formation. According to our model, both the Avroman and the Bisotoun units formed an intra-oceanic carbonate platform, built-up by a characteristic megalodontaceae-bearing carbonate platform assemblage during the Late Triassic. The Harsin oceanic basin, which separated the Avroman-Bisotoun Platform from the Arabian Platform, was characterised by deep-marine sedimentation, the remnants of which form the Qulqula Formation in Iraq, and the Radiolaritic Nappe and the Harsin Mélange in the Kermanshah Zone. This tectonic setting is not unique; numerous authors suggest the existence of an oceanic rim basin, separating carbonate platform units (e.g. Oman ‘exotics’) from the Arabian Platform. The age of the deformation could be Late Cretaceous (Maastrichtian), but using analogues from Iran, a Palaeogene deformation also seems possible. The Avroman Formation was interpreted to be a Dachstein-type sediment, similar to the well-studied Dachstein Formation of the Northern Calcareous Alps, Austria. Rock units, with similar lithology, or identical depositional environment and macroscopic fauna, were described by numerous authors along the Neo-Tethys suture zone from Austria to Japan, and from several tectonic units along the Panthalassa margin. The implication of this correlation is important for future studies: using well-described type localities of the marine units from the Northern Calcareous Alps as a reference, it is possible to significantly extend the available background knowledge, and to gain better insight into the Triassic regional depositional environment of the Middle East.


GeoArabia ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 17-94
Author(s):  
Daniel Bendias ◽  
Thomas Aigner

ABSTRACT The mixed carbonate-siliciclastic Lower to Middle Jurassic Mafraq Formation unconformably overlies the Triassic Mahil Formation in outcrops of the Oman Mountains (pre-Mafraq Unconformity, known as pre-Marrat unconformity in other regions of Arabia). Together with the overlying Dhruma Formation, it is part of the Sahtan Group. This study provides: (1) a detailed facies analysis based on sedimentological logging of 12 outcrops. Twenty-four facies types were established and grouped into five facies associations, which can also be recognized in subsurface core intervals; (2) a detailed sequence-stratigraphic framework of the Mafraq Formation. Facies stacking and log patterns reveal cycle hierarchies on four scales from m-scale cycles, to several m-thick cycle sets, to tens of m-thick, high-frequency sequences, to 100 m-thick composite sequences; and (3) a documentation of potential reservoir and seal units. The study follows an approach from 1-D (outcrop sections) to 2-D (correlations and potential reservoir dimensions). The Mafraq outcrop type section, located in Wadi Sahtan is documented in an integrated way (facies, litho-, bio-, chemo- and sequence stratigraphy), together with additional outcrops of the Mafraq Formation throughout North Oman. 2-D correlation of the Mafraq Formation throughout North Oman is essentially based on cycle sets and provides key information about the lateral paleogeographic development of the formation. A general proximal-distal trend, from south to north, has been proposed by Ziegler (2001); outcrop data from the Oman Mountains confirms this trend and adds an EW-deepening component. The mixed carbonate-clastic Lower Mafraq Member (Sequence) with a coastal/estuarine to shallow-marine environment forms onlaps onto the pre-Mafraq Unconformity below, and thins out completely after some 10s of kilometers towards the southeast. The Upper Mafraq Member (Sequence) seems to be continuous over 10s of kilometers with less thickness decrease. Instead, a transition from a more distal carbonate shoal - backshoal environment in the northwest to a proximal clastic coastal/estuarine/terrestrial environment in the southeast can be observed. On a 100s km-scale significant thinning and a change towards terrestrial clastic facies can be observed southeast of the Oman Mountains area. Combined results from lateral/vertical logging, paleoenvironmental interpretations and correlation provided 3-D information about the dimensions of potential reservoir and seal units. Several potential reservoir/seal intervals and their dimensions in dip direction could be identified: (1) Lower Mafraq Sequence: various types of sandbodies, most of them with a lateral extent ca. 5 km, sealed by shales. (2) Upper Mafraq Sequence, northwestern part: oolitic grainstones, laterally correlative over 10–20 km, sealed by shales. (3) Upper Mafraq Sequence, southeastern part: channelized sandstones units, lateral extent up to km, sealed by shales.


GeoArabia ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 175-224
Author(s):  
Barry G.M. Wood

ABSTRACT The geological community has broadly accepted that the region of NE Africa and NW Arabia deformed under tension during the post-Hercynian disintegration of northern Gondwana. Further, it has also generally accepted that sedimentation occurred within extensional half-grabens that formed along the length of what was then the southern margin of the Neo-Tethys Ocean. Consensus is that Alpine age compression then forced inversion of these half-grabens to form the well-known Syrian Arc structures that stretch from the Western Desert of Egypt to NE Syria. As new data has become available (Enclosures I and II), there are indications that an alternative mechanism, founded in continuous compression rather than extension then compression, better explains the tectonics and sedimentary history of the region since the late Palaeozoic. Data from Syria, Jordan, the Levant and Egypt demonstrate that distinct post-Hercynian Orogeny, Tethyan and Alpine sequences (basins) lie on a final, deeply eroded and folded Hercynian Unconformity, and that this surface refolded post-Hercynian time to form the confining walls of a single trough extending from NE Syria to the Western Desert of Egypt. Prior to the deposition of the first Tethyan basin in the late Carboniferous, the Hercynian Unconformity surface deformed to establish a plate-scale arch, the Levant Arch, that extended from NE Syria and southern Turkey, over 1,500 km southwest to the three corners region of Egypt, Sudan and Libya. This arch refolded in the late Palaeozoic to form the early Levant Trough composed of the Palmyride Trough, its extension under the Eastern Mediterranean and the Levant, through the Sinai and into western Egypt. Contrary to the now established idea that the southern margin of the Carboniferous–Permian Tethyan Ocean was a “passive margin”, the trough and internally constrained basins, slowly narrowed and deepened under continuous compression from the southeast from at least the late Palaeozoic to the Present. Each internal, distinct basin sequence is well defined by long periods of slow, low-energy, laterally persistent, sedimentation, separated from underlying and overlying basin sequences by almost equally long periods of erosion or non-deposition, coincident with increased regional structuring and volcanism. Each new basin, following a cessation of this regional structural activity, found itself nested within its predecessor, with the older basin lying slightly counter-clockwise to the younger. It is proposed that counter-clockwise, regional (and basin) rotation was facilitated by newly documented NW-oriented cross-shears, with inter-basin periods of erosion or non-deposition due to whole-basin (regional) uplift, forced by trough narrowing. Tectonic-scale geologic features, such as cross-basin and regional shears, trough margin uplift and northwest migration, laterally extensive, sheet-like sedimentation, sediment feathering onto unfaulted margins, regional erosion related to whole-basin uplift and massive flank gravity sliding with resultant down-slope buckle folding, taken together, attest to compression as the driving agent. Whole-basin and regional, counter-clockwise rotation through time, suggests a constant direction of compression. Understanding the correlation of sedimentary fill to local and regional structural events brings new insight to the deformation of the northern regions of Gondwana during the closure of Tethyan oceans. This model may also apply on a larger scale of whole-plate deformation.


GeoArabia ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 145-172
Author(s):  
Sherif Farouk ◽  
Mahmoud Faris ◽  
Fayez Ahmad ◽  
John H. Powell

ABSTRACT The first detailed calcareous nannofossil and planktonic foraminiferal biostratigraphic and integrated lithofacies analyses of the Eocene–Oligocene transition at the Qa’ Faydat ad Dahikiya area in the Eastern Desert of Jordan, on the border with Saudi Arabia, is presented. Three calcareous nannofossil zones namely: Discoaster saipanensis (NP17), Chiasmolithus oamaruensis (NP18) and Ericsonia subdisticha (NP21), and three planktonic foraminiferal zones: upper part of Truncorotaloides rohri (E13), Globigerinatheka semiinvoluta (E14) and Cassigerinella chipolensis/Pseudohastigerina micra (O1) are identified. Calcareous nannofossil bioevents recorded in the present study show numerous discrepancies with the Standard biostratigraphic zonal schemes to detect the Middle/Upper Eocene boundary (e.g. the highest occurrences (HOs) of Chiasmolithus solitus, C. grandis, and lowest occurrences (LOs) of C. oamaruensis, Isthmolithus recurvus are not considered reliable markers for global correlation). The Middle/Upper Eocene boundary occurs in the current study above the extinctions of large muricate planktonic foraminifera (large Acarinina and Truncorotaloides spp.) which coincide within the equivalent calcareous nannofossil NP18 Zone. These microplanktonic bioevents seem to constitute more reliable markers for the base of the Upper Eocene in different provinces. The uppermost portion of the Middle Eocene is characterized by an observed drop in faunal content and, most likely, primarily denotes the effect of the major fall in eustatic sea level. A major unconformity (disconformity) marked by a mineralized hardground representing a lowstand is recorded in the present study at the Eocene–Oligocene transition that reveals an unexpected ca. 2.1 Myr duration, separating Eocene (NP18/E14 zones) from Oligocene (NP21/O1 zones). Furthermore, the microfossil turnover associated with a rapid decline of the microfossil assemblages shows a distinct drop in diversity and abundance towards the Eocene/Oligocene unconformity and is associated with a sharp lithological break marked, at the base, by a mineralized hardground representing a major sequence boundary. These bioevents, depositional sequences and the depositional hiatus correlate well with different parts of the Arabian and African plates, but the magnitude of the faunal break differs from place to place as a result of intraplate deformation during the regional Oligocene regression of Neo-Tethys on the northern Arabian Plate. The presence of the Lower Oligocene shallow-marine calcareous planktonic assemblages in the study area indicate that communication between the eastern and western provinces of the western Neo-Tethys region still existed at this time.


GeoArabia ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 99-140
Author(s):  
Adnan A.M. Aqrawi ◽  
Balazs Badics

ABSTRACT The Middle Jurassic–Lower Cretaceous strata of the NE Arabian Plate contain several prolific source rocks providing the charge to some of the largest world-class petroleum systems. They are located within the Zagros Fold Belt and Mesopotamian Foreland Basins covering the northern, central and southeastern parts of Iraq, Kuwait and western and southwestern Iran, particularly the Lurestan and Khuzestan provinces. These source rocks include the Bajocian–Bathonian Sargelu, the Callovian–Lower Kimmeridgian Naokelekan and the Upper Tithonian–Lower Berriasian Chia Gara formations of Iraq and their chronostratigraphic equivalents in Kuwait and Iran. They have charged the main Cretaceous and Cenozoic (Tertiary) reservoirs throughout Iraq, Kuwait and Iran with more than 250 billion barrels of proven recoverable hydrocarbons. These formations represent the transgressive system tracts of sequences deposited within deep basinal settings and anoxic environments. They are dominated by black shales and bituminous marly limestones, with high total organic carbon (TOC) contents (ranging from 1–18 wt%), and by marine Type IIS kerogen. Their Rock-Eval S2 yields may reach up to 60 mg HC/g Rock, particularly along the depocentre of the Mesopotamian Foreland Basin. The immature hydrogen index (HI) values might have been up to 700 mg HC/g TOC, whereas the present-day observed values vary depending on the location within the basin and the present-day maturity. The Source-Potential Index (SPI; i.e. mass of hydrocarbons in tons, which could be generated from an area of 1 sq m in case of 100% transformation ratio) averages around 2–3, but can even reach up to 14–16 along the basins’ centres. The Sargelu and the overlying Naokelekan-basinal Najmah formations (and their equivalents) could represent the best potential shale-gas/shale-oil plays in Iraq, Kuwait and Iran, due to their organic richness, favourable maturity and the presence of regional upper and lower seals. The estimated oil-in-place for the potential Sargelu shale-oil play in Iraq only is around 1,300–2,500 billion barrel oil-equivalent (BBOE) and in Kuwait is about 7–150 BBOE.


GeoArabia ◽  
2015 ◽  
Vol 20 (2) ◽  
pp. 147-178
Author(s):  
Joachim E. Amthor ◽  
Karl Ramseyer ◽  
Albert Matter ◽  
Thomas Pettke ◽  
Anthony E. Fallick

ABSTRACT The Al Shomou Silicilyte Member (Athel Formation) in the South Oman Salt Basin shares many of the characteristics of a light, tight-oil (LTO) reservoir: it is a prolific source rock mature for light oil, it produces light oil from a very tight matrix and reservoir, and hydraulic fracking technology is required to produce the oil. What is intriguing about the Al Shomou Silicilyte, and different from other LTO reservoirs, is its position related to the Precambrian/Cambrian Boundary (PCB) and the fact that it is a ‘laminated chert’ rather than a shale. In an integrated diagenetic study we applied microstructural analyses (SEM, BSE) combined with state-of-the-art stable isotope and trace element analysis of the silicilyte matrix and fractures. Fluid inclusion microthermometry was applied to record the salinity and minimum trapping temperatures. The microstructural investigations reveal a fine lamination of the silicilyte matrix with a mean lamina thickness of ca. 20 μm consisting of predominantly organic matter-rich and finely crystalline quartz-rich layers, respectively. Authigenic, micron-sized idiomorphic quartz crystals are the main matrix components of the silicilyte. Other diagenetic phases are pyrite, apatite, dolomite, magnesite and barite cements. Porosity values based on neutron density logs and core plug data indicate porosity in the silicilyte ranges from less than 2% to almost to 40%. The majority of the pore space in the silicilyte is related to (primary) inter-crystalline pores, with locally important oversized secondary pores. Pore casts of the silica matrix show that pores are extremely irregular in three dimensions, and are generally interconnected by a complex web or meshwork of fine elongate pore throats. Mercury injection capillary data are in line with the microstructural observations suggesting two populations of pore throats, with an effective average modal diameter of 0.4 μm. The acquired geochemical data support the interpretation that the primary source of the silica is the ambient seawater rather than hydrothermal or biogenic. A maximum temperature of ca. 45°C for the formation of microcrystalline quartz in the silicilyte is good evidence that the lithification and crystallization of quartz occurred in the first 5 Ma after deposition. Several phases of brittle fracturing and mineralization occurred in response to salt tectonics during burial. The sequences of fracture-filling mineral phases (dolomite - layered chalcedony – quartz – apatite - magnesite I+II - barite – halite) indicates a complex fluid evolution after silicilyte lithification. Primary, all-liquid fluid inclusions in the fracture-filling quartz are good evidence of growth beginning at low temperatures, i.e. ≤ 50ºC. Continuous precipitation during increasing temperature and burial is documented by primary two-phase fluid inclusions in quartz cements that show brines at 50°C and first hydrocarbons at ca. 70°C. The absolute timing of each mineral phase can be constrained based on U-Pb geochronometry, and basin modelling. Secondary fluid inclusions in quartz, magnesite and barite indicate reactivation of the fracture system after peak burial temperature during the major cooling event, i.e. uplift, between 450 and 310 Ma. A number of first-order trends in porosity and reservoir-quality distribution are observed which are strongly related to the diagenetic and fluid history of the reservoir: the early in-situ generation of hydrocarbons and overpressure development arrests diagenesis and preserves matrix porosity. Chemical compaction by pressure dissolution in the flank areas could be a valid hypothesis to explain the porosity variations in the silicilitye slabs resulting in lower porosity and poorer connectivity on the flanks of the reservoir. Most of the hydrocarbon storage and production comes from intervals characterized by preserved micropores, not hydrocarbon storage in a fracture system. The absence of oil expulsion results in present-day high oil saturations. The main diagenetic modifications of the silicilyte occurred and were completed relatively early in its history, i.e. before 300 Ma. An instrumental factor for preserving matrix porosity is the difficulty for a given slab to evacuate all the fluids (water and hydrocarbons), or in other words, the very good sealing capacity of the salt embedding the slab.


Sign in / Sign up

Export Citation Format

Share Document