scholarly journals Arabian Orbital Stratigraphy revisited – AROS 2015

GeoArabia ◽  
2015 ◽  
Vol 20 (4) ◽  
pp. 183-216
Author(s):  
Moujahed I. Al-Husseini

ABSTRACT ‘Arabian Orbital Stratigraphy’ (AROS) is an R&D program aimed at dating Arabia’s transgressive-regressive (T-R) depositional sequences using the ‘Orbital Scale’ of Matthews and Al-Husseini (2010). The scale consists of time-rock units named ‘orbitons’, ‘dozons’ and ‘stratons’ that are tuned by orbital-forcing of glacio-eustasy. Orbitons have durations of 14.58 million years (Myr), and are bounded by regional sequence boundaries (SB, hiatus, unconformity, disconformity, lowstand deposits). Orbiton 1 was deposited between SB 1 at 16.166 million years before present (Ma) and SB 0 (zero) at 1.586 Ma. The interval between SB 0 and the Precambrian/Cambrian Boundary (PCB) consists of 37 orbitons; at least 30 can be identified in Arabia based on published data. SB 37 is predicted at 541.046 Ma (1.586 + 37 × 14.58 Myr), and correlates to the PCB, calibrated in Oman at 541.0 Ma. An orbiton consists of 36 stratons. Stratons are T-R sequences that tracked the long-eccentricity orbital cycle (E-cycle). The age of base Straton 1 is 0.371 Ma. Their durations can range between about 300 thousand years (Kyr) and 550 Kyr, but average 405 Kyr over several million years. The Phanerozoic Era consists of 1,336 stratons that are typically referred to as 4th-order sequences or cycle sets. Approximately 200 stratons are identified in this paper, and tentatively dated in the Orbital Scale. An orbiton also consists of three dozons, which are generally bounded by regional SBs. Dozons typically consist of 12 stratons (4.86 Myr). Examples of dozons are illustrated in this paper for the Permian–Triassic in Arabia. AROS predicts ages for Arabian and global T-R sequences that are deterministic, and they may be more accurate than those estimated by the Geological Time Scale GTS 2015. The paper proposes that the global T-R sequences should be recast in terms of stratons (E-cycles), and that stratons be used to calibrate biostratigraphy, magneto-stratigraphy and other global stratigraphic markers in future GTSs.

GeoArabia ◽  
2010 ◽  
Vol 15 (4) ◽  
pp. 125-142 ◽  
Author(s):  
Moujahed I. Al-Husseini

ABSTRACT The Upper Albian, Cenomanian and Turonian Natih Formation in Oman was interpreted by previous authors in terms of the regional Natih I to V depositional sequences comprising 34 higher-order subsequences (referred to as the Adopted Interpretation in this paper). It mainly consists of limestones, and is separated from the underlying Albian shales of the Nahr Umr Formation by the Natih Sequence Boundary. The interpreted position of the Cenomanian Stage within the formation differs substantially depending on carbon-isotope and/or biostratigraphic data (ammonite, microfaunal and nannofossil). The top of the Natih Formation is a regional subaerial exposure surface (incised by channels with depths reaching 150–200 m) that was transgressed by Lower Coniacian marine shales (Muti Formation at outcrop, and Shargi Member of the Fiqa Formation in subsurface; Fiqa Transgression above the Fiqa Sequence Boundary). Over paleohighs the lower part of the Fiqa, Natih and older formations are eroded by the Campanian angular Intra-Fiqa Unconformity that is attributed to far-field compressional tectonism along the margins of the Arabian Plate. The paper tunes the 34 Natih subsequences (each named a Straton) at 405 Ky/cycle: the period of the long-eccentricity signal of the Earth’s orbit. They are dated using a time scale that is based on an orbital-forcing model of glacioeustasy, which consists of ca. 14.58 My (36 stratons) repeating, orbital cycles named orbitons. Orbitons are predicted to be separated by major glacio-eustatic lowstands (regional sequence boundary), with Orbiton 1 spanning ca. 16.1 to 1.5 Ma. The Natih Formation completely falls within Orbiton 7 (ca. 103.6–89.0 Ma) in the Late Albian – Turonian time interval of the Geological Time Scale of the International Commission on Stratigraphy (GTS). The Formation consists of only 34 subsequences (compared to the 36 predicted for a complete orbiton). This implies two stratons are represented by a hiatus (ca. 810 Ky) between ca. 89.8–89.0 Ma near the end of Orbiton 7 and the Turonian/Coniacian boundary (88.6 Ma in GTS). The hiatus corresponds to a Late Turonian – ?earliest Coniacian biostratigraphic break at the Sub-Fiqa Unconformity and is correlated to a model-predicted major polar glaciation and sea-level lowstand. The hiatus is unrelated to the structural deformation in Interior Oman (First Alpine Event), which started some 10 My later in Campanian time. Orbiton 7 (ca. 103.6–89.0 Ma) correlates by architecture (sequence boundaries and maximum flooding surfaces) and age to the global Late Albian – Turonian UZA 2 Supersequence inclusive of the shortlived 100+ m sea-level drop in latest Turonian (ca. 102.5–88.6 Ma in empirical time scale). The Formation is proposed as the Natih Supersequence and the type section of Orbiton 7.


GeoArabia ◽  
2005 ◽  
Vol 10 (2) ◽  
pp. 165-184 ◽  
Author(s):  
Moujahed Al-Husseini ◽  
Robley K. Matthews

ABSTRACT A simplified model of orbital-forcing suggests that the Phanerozoic Eon may be represented by 38 periodic second-order depositional sequences (DS2) each lasting about 14.58 million years (my). The DS2s are separated by second-order sequence boundaries (SB2, maximum regression surface) that should be manifested as regional stratigraphic discontinuities (unconformity, disconformity, time hiatus). To test this simple model, the Arabian succession was reviewed to identify candidate regional stratigraphic discontinuities that might be periodic at 14.58 my. Of the 38 predicted SB2s, 34 regional stratigraphic discontinuities were identified within the uncertainty of biostratigraphic-radiometric age dating, or by stratigraphic position. One SB2 could not be positioned in the succession because of ambiguous biostratigraphic dating. One was predicted within a long-lasting hiatus, and another two were predicted within an undifferentiated formation. The four unidentified SB2s reflect on the limitations of the data sample, rather than on the viability of the model. Because the stratigraphic discontinuities represent age spans with bounding ages that are at best believed to have accuracies of about ± 3.0 my, the model-data correlation was considered inconclusive. The resulting analysis, however, demonstrates that the ages in million years before present (Ma) of interpreted Arabian (and possibly global) sequence stratigraphic surfaces and depositional sequences, as estimated by biostratigraphic-radiometric dating techniques, are highly inaccurate (± 5–10 my). This conclusion suggests that presently used chronostratigraphic correlations across the Arabian Platform should be treated with great caution. The correlation of model SB2s to regional stratigraphic discontinuities, affords an alternative time scale that may eventually assist in the calibration of the biostratigraphic-radiometric time scale. An orbital-forcing time scale has a decided advantage in that it comes with precise third- and fourth-order stratigraphic predictions imbedded as sea-level fluctuations. The next level of testing is whether these orbital-forcing predictions hold up to precise correlation to stratigraphy.


2009 ◽  
Vol 96 (4) ◽  
pp. 249-262 ◽  
Author(s):  
Brian McGowran ◽  
Bill Berggren ◽  
Frits Hilgen ◽  
Fritz Steininger ◽  
Marie-Pierre Aubry ◽  
...  

2021 ◽  
Vol 3-4 (185-186) ◽  
pp. 56-64
Author(s):  
Svitlana Hnylko

Paleogene deposits are the main reservoir of hydrocarbon resources in the Carpathians and creation of the modern stratigraphic scheme of these deposits is the basis for improving the efficiency of geological search works. The reliable stratification is a necessary precondition for the preparation of geological maps. Stratification of the Paleocene–Eocene sediments is provided by foraminifera, nannoplankton, dinocysts, radiolarians, sponge spicules, palynoflora. Planktonic foraminifera is the main stratigraphic group of the Paleogene fauna. In the predominantly non-calcareous flysch of the Paleocene–Eocene of the Carpathians, mainly agglutinated benthic foraminifera of siliceous composition are developed. Planktonic foraminifera are distributed locally – in calcareous facies. The most complete sequence of Paleocene–Eocene planktonic foraminifera is represented in the Metova Formation (the Vezhany nappe of the Inner Carpathians). The results of own researches of natural sections of sediments distributed within the Magursky, Monastyretsky and Vezhany nappes of the Ukrainian Carpathians together with the analysis of literature sources are used. The article presents a generalized biozonal division of the Paleocene–Eocene of the Ukrainian Carpathians by planktonic foraminifera. On the basis of certain correlation levels, a comparison with the Geological Time Scale was made. The Parvularugoglobigerina eugubina Zone (lowermost Danian), Globoconusa daubjergensis Zone (middle Danian), Praemurica inconstans Zone (upper Danian); Morozovella angulata Zone (lower Selandian); Globanomalina pseudomenardii Zone fnd Acarinina acarinata Zone (upper Selandian–Thanetian); Morozovella subbotinae Zone (lower Ypresian), Morozovella aragonensis Zone (upper Ypresian); Acarinina bullbrooki Zone (lower Lutetian), Acarinina rotundimarginata Zone (upper Lutetian); Hantkenina alabamensis Zone (Bartonian); Globigerinatheka tropicalis Zone (lower Priabonian) and Subbotina corpulenta Zone (upper Priabonian) based on planktonic foraminifera are characterized in studied deposits.


Sign in / Sign up

Export Citation Format

Share Document