scholarly journals Lucas sequences and repdigits

2021 ◽  
pp. 1-18
Author(s):  
Hayder Raheem Hashim ◽  
Szabolcs Tengely
Keyword(s):  
2016 ◽  
Vol 4 (2) ◽  
pp. 107-119
Author(s):  
A. D. Godase ◽  
M. B. Dhakne
Keyword(s):  

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 183
Author(s):  
Michael J. Schlosser ◽  
Meesue Yoo

We study two types of dynamical extensions of Lucas sequences and give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-dependent) version involving commuting variables. We show that a nice solution for this system is given by elliptic numbers. The second type involves a non-commutative version of Lucas sequences which defines the non-commutative (or abstract) Fibonacci polynomials introduced by Johann Cigler. If the non-commuting variables are specialized to be elliptic-commuting variables the abstract Fibonacci polynomials become non-commutative elliptic Fibonacci polynomials. Some properties we derive for these include their explicit expansion in terms of normalized monomials and a non-commutative elliptic Euler–Cassini identity.


Author(s):  
Hemar Godinho ◽  
Victor G. L. Neumann

In this paper, we consider the Diophantine equation in the title, where [Formula: see text] are distinct odd prime numbers and [Formula: see text] are natural numbers. We present many results given conditions for the existence of integers solutions for this equation, according to the values of [Formula: see text] and [Formula: see text]. Our methods are elementary in nature and are based upon the study of the primitive divisors of certain Lucas sequences as well as the factorization of certain polynomials.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850056 ◽  
Author(s):  
Zahid Raza ◽  
Hafsa Masood Malik

Let [Formula: see text] be any positive integers such that [Formula: see text] and [Formula: see text] is a square free positive integer of the form [Formula: see text] where [Formula: see text] and [Formula: see text] The main focus of this paper is to find the fundamental solution of the equation [Formula: see text] with the help of the continued fraction of [Formula: see text] We also obtain all the positive solutions of the equations [Formula: see text] and [Formula: see text] by means of the Fibonacci and Lucas sequences.Furthermore, in this work, we derive some algebraic relations on the Pell form [Formula: see text] including cycle, proper cycle, reduction and proper automorphism of it. We also determine the integer solutions of the Pell equation [Formula: see text] in terms of [Formula: see text] We extend all the results of the papers [3, 10, 27, 37].


2021 ◽  
Vol 29 (1) ◽  
pp. 17-36
Author(s):  
Dorin Andrica ◽  
Ovidiu Bagdasar ◽  
George Cătălin Ţurcaş

Abstract In this paper we introduce the functions which count the number of generalized Lucas and Pell-Lucas sequence terms not exceeding a given value x and, under certain conditions, we derive exact formulae (Theorems 3 and 4) and establish asymptotic limits for them (Theorem 6). We formulate necessary and sufficient arithmetic conditions which can identify the terms of a-Fibonacci and a-Lucas sequences. Finally, using a deep theorem of Siegel, we show that the aforementioned sequences contain only finitely many perfect powers. During the process we also discover some novel integer sequences.


2018 ◽  
Vol 42 (7) ◽  
pp. 977-983 ◽  
Author(s):  
Carlo Sanna
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document