A New Method To Model Relative Permeability in Compositional Simulators To Avoid Discontinuous Changes Caused by Phase-Identification Problems

SPE Journal ◽  
2012 ◽  
Vol 17 (04) ◽  
pp. 1221-1230 ◽  
Author(s):  
Chengwu Yuan ◽  
Gary A. Pope

Summary Simple methods, such as the use of density during compositional simulations, often fail to identify the phases correctly, and this can cause discontinuities in the computed relative permeability values. The results are then physically incorrect. Furthermore, numerical simulators often slow down or even stop because of discontinuities. There are many important applications in which the phase behavior can be single phase, gas/liquid, liquid/liquid, gas/ liquid/liquid, or gas/liquid/solid at different times in different gridblocks. Assigning physically correct phase identities during a compositional simulation turns out to be a difficult problem that has resisted a general solution for decades. We know that the intensive thermodynamic properties, such as molar Gibbs free energy, must be continuous, assuming local equilibrium, but this condition is difficult to impose in numerical simulators because of the discrete nature of the calculations. An alternative approach is to develop a relative permeability model that is continuous and independent of the phase numbers assigned by the flash calculation. Relative permeability is a function of saturation, but also composition, because composition affects the phase distribution in the pores (i.e., the wettability). The equilibrium distribution of fluids in pores corresponds to the minimum in the Gibbs free energy for the entire fluid/rock system, including interfaces. In general, however, this relationship is difficult to model from first principles. What we can easily do is calculate the molar Gibbs free energy (G) of each phase at reference compositions where the relative permeabilities are known or assumed to be known and then interpolate between these values by use of the G calculated during each timestep of the simulation. Relative permeability values calculated this way are unconditionally continuous for all possible phase-behavior changes, including even critical points. We tested the new relative permeability model on a variety of extremely difficult simulation problems with up to four phases, and it has not failed yet. We illustrate several of these applications.

1994 ◽  
Vol 26 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Smruti Dash ◽  
Ziley Singh ◽  
R. Prasad ◽  
D.D. Sood

1988 ◽  
Vol 20 (7) ◽  
pp. 781-784 ◽  
Author(s):  
V.S Iyer ◽  
V Venugopal ◽  
Smruti Mohapatra ◽  
Ziley Singh ◽  
K.N Roy ◽  
...  

Author(s):  
KAMAL I AL-MALAH

Objective: The objective of the study is to optimize the solubility of a drug or a drug-like molecule using Aspen Plus simulation platform. Aspirin (solute) was taken as the second case study. The following solvents were used in our dry (virtual) laboratory experiment: Water, acetone, ethanol, and ethylene-glycol-mono-propyl-ether (PROPGLYC). Methods: A simplified process flow sheet made of a single mixing tank where it has five feed streams, representing the solute, the water, and the set of three organic solvents, and one product stream where aspirin is either solubilized (liquid solution) or remains as solid crystal. Minimization of the molar Gibbs free energy of mixing, ΔGmix, was used as an objective function from an optimization point of view. The Non-random Two-liquid property method was used to analyze the solution properties. Results: Using the molar Gibbs free energy of mixing, ΔGmix, as a criterion of solution thermodynamic stability, it was found that the most stable solution is the quinary mixture made of 24.42% aspirin, 10.22% water, 21.08% acetone, 19.51% ethanol, and 24.77 mole % PROPGLYC. Conclusions: Exploiting Aspen Plus can be extended to handle the solubility of a new drug-like molecule once it is defined within its molecular editor with a little knowledge such as density and/or melting point.


Sign in / Sign up

Export Citation Format

Share Document