Improved Characterization and Performance Assessment of Shale Gas Wells by Integrating Stimulated Reservoir Volume and Production Data

Author(s):  
Jichao Yin ◽  
Jiang Xie ◽  
Akhil Datta-Gupta ◽  
Alfred Daniel Hill
2019 ◽  
Author(s):  
Ran Lin ◽  
Lan Ren ◽  
Jinzhou Zhao ◽  
Yongfu Tao ◽  
Xiucheng Tan ◽  
...  

SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1883-1898 ◽  
Author(s):  
Yanbin Zhang ◽  
Neha Bansal ◽  
Yusuke Fujita ◽  
Akhil Datta-Gupta ◽  
Michael J. King ◽  
...  

Summary Current industry practice for characterization and assessment of unconventional reservoirs mostly uses empirical decline-curve analysis or analytic rate- and pressure-transient analysis. High-resolution numerical simulation with local perpendicular bisector (PEBI) grids and global corner-point grids has also been used to examine complex nonplanar fracture geometry, interaction between hydraulic and natural fractures, and implications for the well performance. Although the analytic tools require many simplified assumptions, numerical-simulation techniques are computationally expensive and do not provide the more-geometric understanding derived from the depth-of-investigation (DOI) and drainage-volume calculations. We propose a novel approach for rapid field-scale performance assessment of shale-gas reservoirs. Our proposed approach is dependent on a high-frequency asymptotic solution of the diffusivity equation in heterogeneous reservoirs and serves as a bridge between simplified analytical tools and complex numerical simulation. The high-frequency solution leads to the Eikonal equation (Paris and Hurd 1969), which is solved for a “diffusive time of flight” (DTOF) that governs the propagation of the “pressure front” in the reservoir. The Eikonal equation can be solved by use of the fast-marching method (FMM) to determine the DTOF, which generalizes the concept of DOI to heterogeneous and fractured reservoirs. It provides an efficient means to calculate drainage volume, pressure depletion, and well performance and can be significantly faster than conventional numerical simulation. More importantly, in a manner analogous to streamline simulation, the DTOF can also be used as a spatial coordinate to reduce the 3D diffusivity equation to a 1D equation, leading to a comprehensive simulator for rapid performance prediction of shale-gas reservoirs. The speed and versatility of our proposed method makes it ideally suited for high-resolution reservoir characterization through integration of static and dynamic data. The major advantages of our proposed approach are its simplicity, intuitive appeal, and computational efficiency. We demonstrate the power and utility of our method by use of a field example that involves history matching, uncertainty analysis, and performance assessment of a shale-gas reservoir in east Texas. A sensitivity study is first performed to systematically identify the “heavy hitters” affecting the well performance. This is followed by history matching and an uncertainty analysis to identify the fracture parameters and the stimulated-reservoir volume. A comparison of model predictions with the actual well performance shows that our approach is able to reliably predict the pressure depletion and rate decline.


Fractals ◽  
2017 ◽  
Vol 25 (04) ◽  
pp. 1740007 ◽  
Author(s):  
GUANGLONG SHENG ◽  
YULIANG SU ◽  
WENDONG WANG ◽  
FARZAM JAVADPOUR ◽  
MEIRONG TANG

According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length ([Formula: see text]), deviation angle ([Formula: see text]), iteration times ([Formula: see text]) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.


2018 ◽  
Vol 166 ◽  
pp. 290-304 ◽  
Author(s):  
Lan Ren ◽  
Ran Lin ◽  
Jinzhou Zhao ◽  
Vamegh Rasouli ◽  
Jiangyu Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document