Optimization of horizontal well fracturing in shale gas reservoir based on stimulated reservoir volume

2020 ◽  
Vol 190 ◽  
pp. 107059
Author(s):  
Hao Zhang ◽  
James Sheng
Author(s):  
Xinfang Ma

Hydraulic fracturing in shale gas reservoirs has usually resulted in complex fracture network. The results of micro-seismic monitoring showed that the nature and degree of fracture complexity must be clearly understood to optimize stimulation design and completion strategy. This is often called stimulated reservoir volume (SRV). In the oil & gas industry, stimulated reservoir volume has made the shale gas exploitation and development so successful, so it is a main technique in shale gas development. The successful exploitation and development of shale gas reservoir has mainly relied on some combined technologies such as horizontal drilling, multi-stage completions, innovative fracturing, and fracture mapping to engineer economic completions. Hydraulic fracturing with large volumes of proppant and fracturing fluids will not only create high conductivity primary fractures but also stimulate adjacent natural fractures. Fracture network forming around every hydraulic fracture yields a stimulated reservoir volume. A model of horizontal wells which was based on a shale gas reservoir after volume fracturing in China was established to analyze the effect of related parameters on the production of multi-fractured horizontal wells in this paper. The adsorbed gas in the shale gas reservoir is simulated by dissolved gas in the immobile oil. The key to simulate SRV is to accurately represent the hydraulic fractures and the induced complex natural fracture system. However, current numerical simulation methods, such as dual porosity modeling, discrete modeling, have the following limitations: 1) time-consuming to set up hydraulic and natural fracture system; 2) large computation time required. In this paper, the shape of the stimulated formation is described by an expanding ellipsoid. Simplified stimulated zones with higher permeability were used to model the hydraulic fracture and the induced complex natural fracture system. In other words, each primary fracture has an enhanced zone, namely SRV zone. This method saves much developing fine-grid time and computing time. Compared with the simulation results of fine-grid reference model, it has shown that this simplified model greatly decreases simulation time and provides accurate results. In order to analyze the impacts of related parameters on production, a series of simulation scenarios and corresponding production performance were designed. Optimal design and analyses of fracturing parameters and the formation parameters have been calculated in this model. Simulation results showed that the number of primary fractures, half length, SRV half-width and drop-down have great effects on the post-fracturing production. Formation anisotropies also control the production performance while the conductivity of the primary fractures and SRV permeability do not have much impact on production performance. The complexity of stimulated reservoir volume has strong effect on gas well productivity. Fracture number mainly affects the early time production performance. The increase of SRV width cannot enlarge the drainage area of the multi-fractured horizontal wells, but it can improve the recovery in its own drainage region. Permeability anisotropies have much effect on production rate, especially the late time production rate. The results prove that horizontal well with volume fracturing plays an irreplaceable role in the development of ultra-low permeability shale gas reservoir.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Qi-guo Liu ◽  
Wei-hong Wang ◽  
Hua Liu ◽  
Guangdong Zhang ◽  
Long-xin Li ◽  
...  

Shale gas reservoir has been aggressively exploited around the world, which has complex pore structure with multiple transport mechanisms according to the reservoir characteristics. In this paper, a new comprehensive mathematical model is established to analyze the production performance of multiple fractured horizontal well (MFHW) in box-shaped shale gas reservoir considering multiscaled flow mechanisms (ad/desorption and Fick diffusion). In the model, the adsorbed gas is assumed not directly diffused into the natural macrofractures but into the macropores of matrix first and then flows into the natural fractures. The ad/desorption phenomenon of shale gas on the matrix particles is described by a combination of the Langmuir’s isothermal adsorption equation, continuity equation, gas state equation, and the motion equation in matrix system. On the basis of the Green’s function theory, the point source solution is derived under the assumption that gas flow from macropores into natural fractures follows transient interporosity and absorbed gas diffused into macropores from nanopores follows unsteady-state diffusion. The production rate expression of a MFHW producing at constant bottomhole pressure is obtained by using Duhamel’s principle. Moreover, the curves of well production rate and cumulative production vs. time are plotted by Stehfest numerical inversion algorithm and also the effects of influential factors on well production performance are analyzed. The results derived in this paper have significance to the guidance of shale gas reservoir development.


Author(s):  
Yingzhong Yuan ◽  
Wende Yan ◽  
Fengbo Chen ◽  
Jiqiang Li ◽  
Qianhua Xiao ◽  
...  

AbstractComplex fracture systems including natural fractures and hydraulic fractures exist in shale gas reservoir with fractured horizontal well development. The flow of shale gas is a multi-scale flow process from microscopic nanometer pores to macroscopic large fractures. Due to the complexity of seepage mechanism and fracture parameters, it is difficult to realize fine numerical simulation for fractured horizontal wells in shale gas reservoirs. Mechanisms of adsorption–desorption on the surface of shale pores, slippage and Knudsen diffusion in the nanometer pores, Darcy and non-Darcy seepage in the matrix block and fractures are considered comprehensively in this paper. Through fine description of the complex fracture systems after horizontal well fracturing in shale gas reservoir, the problems of conventional corner point grids which are inflexible, directional, difficult to geometrically discretize arbitrarily oriented fractures are overcome. Discrete fracture network model based on unstructured perpendicular bisection grids is built in the numerical simulation. The results indicate that the discrete fracture network model can accurately describe fracture parameters including length, azimuth and density, and that the influences of fracture parameters on development effect of fractured horizontal well can be finely simulated. Cumulative production rate of shale gas is positively related to fracture half-length, fracture segments and fracture conductivity. When total fracture length is constant, fracturing effect is better if single fracture half-length or penetration ratio is relatively large and fracturing segments are moderate. Research results provide theoretical support for optimal design of fractured horizontal well in shale gas reservoir.


Sign in / Sign up

Export Citation Format

Share Document