Turbodrill Bottomhole Assembly and Real-Time Data Improve Through-Tubing Coiled-Tubing Drilling Operations in Sour Gas Well

Author(s):  
A. Ebrahimi ◽  
P. J. Schermer ◽  
W. Jelinek ◽  
D. Pommier ◽  
S. Pfeil ◽  
...  
2010 ◽  
Author(s):  
Michael John Taggart ◽  
Niall Atholl Murray ◽  
Trevor Sturgeon ◽  
William McNeil

2020 ◽  
Vol 43 (3) ◽  
pp. 135-142
Author(s):  
Yustian Ekky Rahanjani ◽  
Budhi Nugraha

This paper primarily is focusing on presenting the non-productive time overview and any kind of non-productive time that can be reduced by real-time data technology, real-time data transmission and visualization infrastructure which supports the processes of aggregation, transmission, and visualization; the example of multipurpose implementation and further innovation and improvements that can be made within the real-time data transmission and visualization, such as real-time reservoir footage calculation during geosteering and drill-time calculation to pick the formation tops and casing point; the challenges and limitation while using real-time data, such as VSAT and local network connectivity issue; and future target and improvement of real-time data usage especially to make an artifi cial intelligence system to predict the potential feature, such as formation or drilling problem while drilling. All of those stuff s could be found by literature study and direct professional experience while handling real-time data system. This technology will inspire the user to design their own solution for their operations. Despite the signifi cant advances on real-time data transmission and visualization, there is signifi cant room to fully use itspotential for advanced workfl ows and the usage of real-time data technology which was proven to reduce the Non-Productive Time that could save the operational cost. We believe that the utilization of real-time data transmission and visualization will defi nitely increase the effi ciency of the drilling operations, especially for multiple wells operations.


Author(s):  
Vanessa Kemajou ◽  
Robello Samuel

Abstract Drilling activities are risky and costly, especially when performed offshore. Careful monitoring and real time data analysis are required for safe and efficient operations with minimized down-time. Drilling operations, being fast-paced and not visible, often lead to transient and unforeseen issues. The synchronous assessment and prediction of drilling quality has historically been a challenge. It relies on a prompt collection, analysis and prediction of the multiple sensors data, as well as an immediate comparison to the original drilling plan. Another challenge is achieving real-time well engineering, and automatically and instantaneously providing valuable insights to the engineering and operations teams. A system was successfully developed to tackle these challenges. It is a cloud-based application, made with an event-driven streaming architecture to automatically retrieve real-time drilling data and compare it with planned data. The real-time data is automatically made available to determine the current well operation or rig state, and trigger the subsequent engineering analysis. Next, a forecast model is trained with the engineering calculation outputs and it returns predictions on these outputs while considering their inherent uncertainty. As a result, these predictions enable alerts to be sent when the system detects approaching anomalous conditions. The proposed system is a DecisionSpace® 365 cloud-native application on an open architecture. It is flexible, accessible from anywhere, can be automatically updated for continuous improvement, and can be deployed easily and quickly. It can also be extended to further applications.


Author(s):  
David M. Pritchard ◽  
Jesse Roye ◽  
J. C. Cunha

When analyzing root causes for minor or major problems occurring in oilwell drilling operations, investigators almost always can track past events, step by step, using recorded data that was produced when the operation occurred. In recent catastrophic blow-outs, investigators were able not only to determine the causes of the accidents but also to indicate mitigating actions, which could have prevented the accident if they were taken when the operation actually took place. This is a strong indicator that, even though the industry has valuable real-time information available, it is not using it as a tool to avoid harmful events and improve performance. Real-time data is not about well control, it is about well control avoidance. Recent catastrophic events have underscored the value of having the right kind of experience to understand and interpret well data in real time, taking the necessary corrective actions before it escalates to more serious problems. What is the well telling us? How do we use real time data to ensure a stable wellbore? Real-time monitoring, integrated with rigorous total well control analysis, is required to embrace and achieve continuous improvements — and ensure the safest possible environment. Next generation monitoring requires a step change that includes hazards avoidance as a precursor to drilling optimization. Real-time data can be used effectively in operations to avoid, minimize, and better manage operational events associated with drilling and completion. Real-time data can also provide the foundational support to improve training in the industry as well as develop hands-on simulators for hazards avoidance.


Author(s):  
M. Li ◽  
H. Liu ◽  
C. Yang

The development of high-sulfur gas fields, also known as sour gas field, is faced with a series of safety control and emergency management problems. The GIS-based emergency response system is placed high expectations under the consideration of high pressure, high content, complex terrain and highly density population in Sichuan Basin, southwest China. The most researches on high hydrogen sulphide gas dispersion simulation and evaluation are used for environmental impact assessment (EIA) or emergency preparedness planning. This paper introduces a real-time GIS platform for high-sulfur gas emergency response. Combining with real-time data from the leak detection systems and the meteorological monitoring stations, GIS platform provides the functions of simulating, evaluating and displaying of the different spatial-temporal toxic gas distribution patterns and evaluation results. This paper firstly proposes the architecture of Emergency Response/Management System, secondly explains EPA’s Gaussian dispersion model CALPUFF simulation workflow under high complex terrain and real-time data, thirdly explains the emergency workflow and spatial analysis functions of computing the accident influencing areas, population and the optimal evacuation routes. Finally, a well blow scenarios is used for verify the system. The study shows that GIS platform which integrates the real-time data and CALPUFF models will be one of the essential operational platforms for high-sulfur gas fields emergency management.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 399-P
Author(s):  
ANN MARIE HASSE ◽  
RIFKA SCHULMAN ◽  
TORI CALDER

Sign in / Sign up

Export Citation Format

Share Document