well data
Recently Published Documents


TOTAL DOCUMENTS

943
(FIVE YEARS 266)

H-INDEX

28
(FIVE YEARS 3)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 131
Author(s):  
Zohreh Safdari ◽  
Hossein Nahavandchi ◽  
Gholamreza Joodaki

Iran is experiencing significant water challenges that have now turned water security into a national priority. By estimating secular trend groundwater storage in Iran between 2002 and 2017, we see that there is an intensive negative trend, even −4400 Mm3 in some areas. These estimations show shifting in the climate and extra extraction from aquifers for agricultural use in some areas in Iran. The secular trend of groundwater storage changes across the whole of Iran inferred from observation well data is −20.08 GT/yr. The secular trends of GWS changes based on observation well data are: −11.55 GT/yr for the Central Plateau basin, −3.60 GT/yr for the Caspian Sea basin, −3.0 GT/yr for the Persian Gulf and Oman Sea basin, −0.53 GT/yr for the Urmieh Lake basin, −0.57 GT/yr for the Eastern Boundary basin, and −0.83 GT/yr for the Gharaghom basin. The most depleted sub-basin (Kavir Markazi) has secular trends of GWS changes of −4.503 GT/yr. This study suggests that groundwater depletion is the largest single contributor to the observed negative trend of groundwater storage changes in Iran, the majority of which occurred after the drought in 2007. The groundwater loss that has been accrued during the study period is particularly alarming for Iran, which is already facing severe water scarcity.


2021 ◽  
Vol 6 (2) ◽  
pp. 173
Author(s):  
Nur Asnah Sitohang ◽  
Diah Lestari Nasution

Primary dysmenorrhea is defined as cramping pain in the lower abdomen that occurs at the start of menstruation in the absence of identifiable pelvic disease. It is one of the most common gynecological symptoms among adolescents and adult women with a prevalence of 45%-95%. Overproduction of uterine prostaglandins is the most widely accepted explanation for the pathogenesis. Excessive release of prostaglandins, especially prostaglandin F2 alpha, which is derived from endometrial secretions from menstrual fluid, is believed to cause the condition. Primary dysmenorrhea has different degrees of negative impact on women's physical, psychological and social functioning, which can result in adolescent and adult women being out of school and absent from work. The purpose of this study was to identify the knowledge and attitudes of street children towards primary dysmenorrhea and dysmenorrhea exercise. The research design is descriptive. The sampling technique is total sampling. The number of samples is 45 people. The sample criteria for street children are teenage girls aged 10-18 years, unmarried, already menstruating, can read and write well. Data analysis is descriptive. The results of the study obtained that the majority of street children's knowledge of adolescents was good (53.3%), dysmenorrhea intensity was moderate pain with a score range of 4-7 (68.9%) and adolescent attitudes were negative (71.1%). Knowledge of respondents still needs to be improved to form a positive attitude. It is recommended to the head of KOPA to cooperate with health workers to conduct health education about primary dysmenorrhea on a regular basis to adolescent street children.


Author(s):  
B. V. Platov ◽  
◽  
A. N. Kolchugin ◽  
E. A. Korolev ◽  
D. S. Nikolaev ◽  
...  

A feature of the oil-bearing carbonate deposits of the lower Pennsylvanian in the east of the Russian platform is their rapid vertical and horizontal change. It is often difficult to make correlations between sections, especially in the absence of core data when using only geophysical data. In addition, not all facies are reliably identified and traceable from log data and not all have high reservoir properties. Authors made an attempt to trace the promising facies both to adjacent wells and, in general, to the entire field area using core study results and translation of these results using log and seismic data. The data showed pinching of rocks with high reservoir characteristics in the direction of the selected profile (from south to north within the field). Coastal shallow water facies, represented by Grainstones and Packstones, with high reservoir properties in the south of the field, are replaced by lagoon facies and facies of subaerial exposures, represented by Wakestones and Mudstones with low reservoir characteristics, in the north of the field. The authors suggest that this approach can be applicable for rocks both in this region and for areas with a similar structure. Keywords: pinch-out; well data; seismic data; limestone; facies; reservoir rocks.


Author(s):  
Anita Mandal ◽  
Debasish Saha ◽  
Asit Kumar

AbstractBikaner–Nagaur basin is located in the northwestern part of India and lies on the rising flank of Punjab platform of Middle Indus basin in Pakistan. Existence of Neoproterozoic-Cambrian petroleum system was confirmed by the exploration activities in the western periphery of the basin, whereas vast areas of central and eastern parts remain unexplored. Knowledge of petroleum system in this unexplored part of the basin is limited due to non-availability of data. Recently, 2525 line km of regional 2D seismic data acquired for the first time by Government of India under National Seismic Program (NSP) unlocks the opportunity for comprehensive understanding of subsurface geology in unexplored part of the basin. Present work aims to interpret recently acquired 2D seismic data and integrate with available surface (outcrop) data, gravity and well data (drilled in western part of basin) for unfolding the petroleum system elements, structural configurations and stratigraphic features in the hitherto central-eastern part of the basin. Two Neoproterozoic-Cambrian hydrocarbon plays: (1) Jodhpur and (2) overlying Bilara/Hanseran Evaporite Group (HEG) were envisaged. Both the plays depicted distinctive seismic characteristics, structural alignment and distribution of reservoir, source and seal. Fluvio-deltaic sandstone within Jodhpur group and shallow marine fractured dolomites within Bilara/HEG showed potential reservoir characteristics whereas organic rich laminated dolomites, stromatolites and argillaceous litho-units within Bilara/HEG group have been predicted as prospective source. The Halite layers within HEG group were considered as effective regional seals. Fault bounded anticlinal structures associated with Cambrian compression have been identified as the main entrapment for hydrocarbon accumulation. The basin witnessed long tectonostratigraphic history with two major compressional phases Structures formed by Cambrian compression are likely to be charged as the time of source maturity and peak expulsion was later, during early Mesozoic period. Overall, the study indicates new opportunities and potential accumulation of hydrocarbon in the unexplored part of the basin.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3579
Author(s):  
Yuxin Wang ◽  
Thomas W. Carion ◽  
Abdul Shukkur Ebrahim ◽  
Gabriel Sosne ◽  
Elizabeth A. Berger

Previous work examining the therapeutic efficacy of adjunct thymosin beta 4 (Tβ4) to ciprofloxacin for ocular infectious disease has revealed markedly reduced inflammation (inflammatory mediators and innate immune cells) with increased activation of wound healing pathways. Understanding the therapeutic mechanisms of action have further revealed a synergistic effect with ciprofloxacin to enhance bacterial killing along with a regulatory influence over macrophage effector cell function. As a natural extension of the aforementioned work, the current study uses an experimental model of P. aeruginosa-induced keratitis to examine the influence of Tβ4 regarding polymorphonuclear leukocyte (PMN/neutrophil) cellular function, contributing to improved disease response. Flow cytometry was utilized to phenotypically profile infiltrating PMNs after infection. The generation of reactive oxygen species (ROS), neutrophil extracellular traps (NETs), and PMN apoptosis were investigated to assess the functional activities of PMNs in response to Tβ4 therapy. In vitro work using peritoneal-derived PMNs was similarly carried out to verify and extend our in vivo findings. The results indicate that the numbers of infiltrated PMNs into infected corneas were significantly reduced with adjunctive Tβ4 treatment. This was paired with the downregulated expression of proinflammatory markers on these cells, as well. Data generated from PMN functional studies suggested that the corneas of adjunctive Tβ4 treated B6 mice exhibit a well-regulated production of ROS, NETs, and limited PMN apoptosis. In addition to confirming the in vivo results, the in vitro findings also demonstrated that neutrophil elastase (NE) was unnecessary for NETosis. Collectively, these data provide additional evidence that adjunctive Tβ4 + ciprofloxacin treatment is a promising option for bacterial keratitis that addresses both the infectious pathogen and cellular-mediated immune response, as revealed by the current study.


2021 ◽  
Author(s):  
Godwin Chimara ◽  
Wael Amer ◽  
Stephane L'Hostis ◽  
Philip Leslie

Abstract Minimizing formation damage is vital for maximizing productivity when an openhole (slotted liner) completion strategy is used, and it is particularly challenging in high temperature wells with bottomhole static temperature approaching 190°C (374°F). A barite-weighted fluid system for such high temperature wells was identified as unsuitable due to lack of ability to remediate via acid treatment. This paper discusses how a customized barite-free non-aqueous drill-in fluid system was used to successfully achieve productivity objectives for three such wells. Based on reservoir and well data provided, a 1.15 to 1.20 sg (9.60 to 10.0 lbm/gal) barite-free, non-aqueous drill-in fluid system was designed using a high density calcium chloride/calcium bromide brine as the internal phase to compensate for the absence of barite as a weighting agent. An engineered acid-soluble bridging package was included to protect the reservoir from excess filtrate invasion and allow for potential remediation by acid treatment at a later stage. The fluid system was subjected to formation response testing, and the results obtained proved satisfactory, confirming the fluid system was suited for drilling the reservoir. A similar solids-free system using higher density brine as the internal phase, was also formulated. This was spotted in the open hole once drilling was completed to help eliminate any potential for solids settling before running the slotted liner. Three wells were successfully drilled and completed. The barite-free system remained stable, allowed for trouble-free fluids-handling and drilling operations, and performed as expected. To aid in minimizing fluid invasion into the reservoir, onsite particle size distribution (PSD) measurements were performed in order to optimize bridging material additions while drilling and enhance efficiency in managing the solids control system. Because of the extremely high bottomhole temperature, a mud cooler was installed to help control the flowline temperature below 60°C (140°F); this helped maintain fluid stability and preserve functionality of downhole tools in this hostile environment. The solids-free system was successfully spotted in the open hole after drilling the section before well completion. This eliminated any settling potential and reduced flowback of solids during production. The recorded productivity of these wells met expectations.


2021 ◽  
Author(s):  
Subrata Chakraborty ◽  
Monica Maria Mihai ◽  
Nacera Maache ◽  
Gabriela Salomia ◽  
Abdulla Al Blooshi ◽  
...  

Abstract In Abu Dhabi, the Mishrif Formation is developed in the eastern and western parts conformably above the Shilaif Formation and forms several commercial discoveries. The present study was carried out to understand the development of the Mishrif Formation over a large area in western onshore Abu Dhabi and to identify possible Mishrif sweet spots as future drilling locations. To achieve this objective, seismic mapping of various reflectors below, above, and within the Mishrif Formation was attempted. From drilled wells all the available wireline data and cores were studied. Detailed seismic sequence stratigraphic analysis was carried out to understand the evolution of the Mishrif Formation and places where the good porosity-permeability development and oil accumulation might have happened. The seismic characters of the Mishrif Formation in dry and successful wells were studied and were calibrated with well data. The Mishrif Formation was deposited during Late Cretaceous Cenomanian time. In the study area it has a gross thickness ranging from 532 to 1,269 ft as derived from the drilled wells; the thickness rapidly decreases eastward toward the shelf edge and approaching the Shilaif basin. The Mishrif was divided into three third-order sequences based on core observations from seven wells and log signatures from 25 wells. The bottom-most sequence Mishrif 1.0 was identified is the thickest unit but was also found dry. The next identified sequence Mishrif 2.0 was also dry. The next and the uppermost sequence identified as Mishrif 3.0 shows a thickness from 123 to 328 ft. All the tested oil-bearing intervals lie within this sequence. This sequence was further subdivided into three fourth-order sequences based on log and core signatures; namely, Mishrif 3.1, 3.2, and 3.3. In six selected seismic lines of 181 Line Km (LKM) cutting across the depositional axis, seismic sequence stratigraphic analysis was carried out. In those sections all the visible seismic reflectors were picked using a stratigraphic interpretation software. Reflector groups were made to identify lowstand systems tract, transgressive systems tract, maximum flooding surface, and highstand systems tract by tying with the observations of log and core at the wells and by seismic signature. Wheeler diagrams were generated in all these six sections to understand the lateral disposition of these events and locales of their development. Based on stratigraphic analysis, a zone with likely grainy porous facies development was identified in Mishrif 3.0. Paleotopography at the top of Mishrif was reconstructed to help delineate areas where sea-level fall generated leaching-related sweet spots. Analysis of measured permeability data identified the presence of local permeability baffles affecting the reservoir quality and hydrocarbon accumulation. This study helped to identify several drilling locations based on a generic understanding of the Mishrif Formation. Such stratigraphic techniques can be successfully applied in similar carbonate reservoirs to identify the prospect areas.


2021 ◽  
Author(s):  
Dengyi Xiao ◽  
Mingsheng Lv ◽  
Guangcheng Hu ◽  
Wenyuan Tian ◽  
Li Wang ◽  
...  

Abstract In Western UAE, the Middle Cretaceous petroleum system is composed of Shilaif source, Mishrif/Tuwayil reservoir and Tuwayil/Ruwaydha seal. Oil is discovered in Tuwayil sandstone in DH and NN fields. Well correlation of Tuwayil siliciclastic interval shows high heterogeneity and rapid lithology varies. Currently, a few general studies about Tuwayil sandstone was published. However, detailed sedimentary facies, reservoir characteristics and accumulation mechanism about Tuwayil are ambiguous. Limitation on these aspects prohibits enlarging exploration activity of Tuwayil and makes barriers to deepen understanding of the whole K2 PS. To enhance understanding on Tuwayil formation, well data in DH, NN fields and adjacent area was integrated. Dedicated single well analysis, well correlation and petrophysics study were carried out. Cores were observed and laboratory outcomes including TS, SEM, RCA, MICP, XRD were adopted into this study. Furthermore, we have also utilized 2D&3D seismic to illustrate the spatial distribution of Tuwayil siliciclastic setting and interior sediment pattern. Basically, the Tuwayil sand-shale interval represents the infilling of Mishrif/Shilaif intrashelf basin and mainly deposits in the tidal flat-delta facies. The epi-continental clast is sourced from the Arabian shield and transferred from west to east. In Western UAE, the Tuwayil depocenter located in DH field, where 4-5 sand layers deposit with net pay of 30-40ft. In NN field, only one sand layer develops with net pay about 4-6ft. Through deposition cycles identification and seismic reflection observation, two sand groups could be recognized in this interval. The lower group is constrained in the depocenter and influenced by the paleo-geomorphology background. The upper group overpassed the former set and pinched out around north of NN. The Mishrif/Shilaif slope area is another potential belt to enlarge Tuwayil discovery, where stratigraphic onlap could be observed and it probably represents the sand pinch-out in lower sand group. For the K2 PS, previous study believed the shale between Tuwayil sand and Mishrif separate these two reservoirs and works as cap rock for Mishrif grainstone. This study suggests that this shale is too thin and not continuous enough to hold the hydrocarbon in Mishrif. On that note, Tuwayil sand and Mishrif belong to the same petroleum system in NN and may have the same OWC. In the NN field, it is quite crucial to consider the extension of Tuwayil sand during evaluating the stratigraphic prospect of Mishrif because the hydrocarbon is mostly likely charged Tuwayil sand first and then gets into underlain Mishrif. This study provides updates and understandings on sedimentary facies, depositional pattern, hydrocarbon accumulation mechanism, reservoir extension and potential identification of Tuwayil formation, which has inspiring implications for the whole K2 PS and could also de-risk the further exploration activity in Western UAE.


2021 ◽  
Author(s):  
Abdelwahab Noufal

Abstract Abu Dhabi subsurface fault populations triggered basin system in diverse directions, because of their significant role as fluid pathways. Studying fault infill materials, fault geometries, zone architecture and sealing properties from outcrops as analogues to the subsurface of Abu Dhabi, and combining these with well data and cores are the main objectives of this paper. The fault core around the fault plane and in areas of overlap between fault segments and around the fault tip include slip surfaces and deformed rocks such as fault gouge, breccia, and lenses of host rock, shale smear, salt flux and diagenetic features. Structural geometry of the fault zone architecture and fault plane infill is mainly based on the competency contrast of the materials, that are behaving in ductile or in a brittle manner, which are distributed in the subsurface of Abu Dhabi sedimentary sequences with variable thicknesses. Brittleness is producing lenses, breccia and gouge, while, ductile intervals (principally shales and salt), evolved in smear and flux. The fault and fractures are behaving in a sealy or leaky ways is mainly dependent on the percentage of these materials in the fault deformation zone. The reservoir sections distancing from shale and salt layers are affected by diagenetic impact of the carbonates filling fault zones by recrystallized calcite and dolomite. Musandam area, Ras Al Khaima (RAK), and Jabal Hafit (JH) on the northeast- and eastern-side of the UAE represents good surface analogues for studying fault materials infill characteristics. To approach this, several samples, picked from fault planes, were analysed. NW-trending faults system show more dominant calcite, dolomite, anhydrites and those closer to salt and shale intervals are showing smearing of the ductile infill. The other linked segments and transfer faults of other directions are represented by a lesser percentage of infill. In areas of gravitational tectonics, the decollement ductile interval is intruded in differently oriented open fractures. The studied outcrops of the offshore salt islands and onshore Jabal Al Dhanna (JD) showing salt flux in the surrounding layers that intruded by the salt. The fractures and faults of the surrounding layers and the embedment insoluble layers are highly deformed and showing nearly total seal. As the salt behaving in an isotropic manner, the deformation can be measured clearly by its impact on the surrounding and embedment's insoluble rocks. The faults/fractures behaviour is vicious in migrating hydrocarbons, production enhancement and hydraulic fracturing propagation.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 502
Author(s):  
Clément Baujard ◽  
Pauline Rolin ◽  
Éléonore Dalmais ◽  
Régis Hehn ◽  
Albert Genter

The geothermal powerplant of Soultz-sous-Forêts (France) is investigating the possibility of producing more energy with the same infrastructure by reinjecting the geothermal fluid at lower temperatures. Indeed, during the operation of the powerplant, the geothermal fluid is currently reinjected at 60–70 °C in a deep fractured granite reservoir, and the MEET project aims to test its reinjection at 40 °C. A 3D hydrothermal study was performed in order to evaluate the spreading of the thermal front during colder reinjection and its impact on the production temperature. In the first step, a 3D structural model at fault scale was created, integrating pre-existing models from 2D vintage seismic profiles, vertical seismic profiles, seismic cloud structure and borehole image logs calibrated with well data. This geometrical model was then adapted to be able to run hydrothermal simulation. In the third step, a 3D hydrothermal model was built based on the structural model. After calibration, the effect of colder reinjection on the production temperature was calculated. The results show that a decrease of 10 °C in the injection temperature leads to a drop in the production temperature of 2 °C after 2 years, reaching 3 °C after 25 years of operation. Lastly, the accuracy of the structural model on which the simulations are based is discussed and an update of the structural model is proposed in order to better reproduce the observations.


Sign in / Sign up

Export Citation Format

Share Document